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Abstract

Robust estimators for linear regression require non-convex objective functions to
shield against adverse effects of contamination, including outliers. This non-convexity
brings challenges, particularly when combined with penalization in high-dimensional
settings. A crucial challenge is selecting hyperparameters for the penalty based on a
finite sample. In practice, cross-validation (CV) is the prevalent strategy with good
performance for convex estimators. Applied with robust estimators, however, CV
often gives subpar results due to the interplay between multiple local minima and
the penalty. The best local minimum attained on the full training data may not be
the minimum with the desired statistical properties. Furthermore, there may be a
mismatch between this minimum and the minima attained in the CV folds which
are used for evaluating the prediction error. This paper introduces a novel adaptive
CV strategy that tracks multiple minima for each combination of hyperparameters
and subsets of the data. A matching scheme is presented for correctly evaluating
minima computed on the full training data using the best-matching minima from the
CV folds. We show that the proposed strategy reduces the variability of the esti-
mated performance metric, leads to smoother CV curves, and therefore substantially
increases the reliability and utility of robust penalized estimators.
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1 Introduction

In this paper, we revisit a critical issue for applying robust penalized estimators: how to

reliably select hyperparameters of the penalty function. In practice, cross-validation (CV)

is by far the most prevalent strategy used for this hyperparameters selection. Besides

adjustments of the CV sampling scheme (e.g., stratified CV), performing multiple replica-

tions of CV or using different evaluation metrics, the general procedure is almost always

the same. Although computations can be burdensome, CV has become a ubiquitous tool

in any statistical learning framework. Recent advances in asymptotic results for K-fold

CV (e.g., Austern and Zhou 2020; Bates et al. 2024; Li 2023) further underline the ad-

vantages of CV that were previously noticed primarily empirically. While these theoretical

guarantees for CV do not apply to robust estimators, some empirical studies suggest that

good out-of-sample accuracy and variable selection can be achieved using CV with robust

measures of prediction accuracy (Amato et al. 2021; Cohen Freue et al. 2019; Filzmoser

and Nordhausen 2021; Khan et al. 2007; Loh 2021; Maronna 2011; Monti and Filzmoser

2021; Ronchetti et al. 1997; Sun et al. 2019). However, reproducing these benefits in prac-

tical applications has proven difficult because CV for robust penalized estimators tends

to be highly unstable (Kepplinger and Cohen Freue 2023; She et al. 2021), particularly

in the presence of contamination in the response and/or the predictors, such as outliers.

As mentioned in Datta and Zou (2019), even in the simpler measurement error model,

leave-one-out CV with variants of the (convex) LASSO estimator fails. When dealing with

arbitrary contamination, and when using non-convex estimators, these issues tend to be

more severe. A more reliable CV method is therefore desperately needed for these cases.

Practically, the issues with CV manifest in very different solutions for different random

CV splits of the data. These differences are often substantial and affect both the estimate

of the prediction accuracy and hyperparameter selection, leading to questionable results. In
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the following, we illuminate the issues underlying the instability of CV for robust penalized

estimators. We propose a novel CV strategy called Robust Information Sharing (RIS)

CV, which provides a more reliable and stable estimation of prediction accuracy and thus

hyperparameter selection in the presence of contamination.

1.1 Background

We focus on robust penalized estimators for the linear regression model with response vector

y = (y1, . . . , yn)
⊺, p-dimensional predictors xi ∈ Rp, i ∈ T = {1, . . . , n}, true coefficients

β0, and i.i.d, errors εi from an arbitrary symmetric distribution. We focus on studies where

the primary goal is to predict out-of-sample responses for a new observation x∗ and the

number of predictors, p, is potentially greater than n. Importantly, up to but less than half

of the observations may deviate from the model.

In this setting, we consider hyperparameter selection for robust estimators defined as

the minimizer of an objective function that can be decomposed into a loss term, ℓ, a penalty

term, P , and the penalization level λ ≥ 0, i.e.,

O(β;T , λ) := ℓ(y −Xβ) + λP (β),

where y = (yi)
⊺

i∈T
,X = (xij)i∈T ,j=1,...,p.

(1)

The loss depends on the parameters only through the residuals, and we assume that it can

be recast as a weighted least-squares loss: ℓ(r) =
∑

i∈T
wi(r)r

2
i , where the weights depend

on the residuals r = (ri)i∈T . The penalty may involve additional hyperparameters, like the

elastic net’s mixing parameter, but we focus on the penalization level.

The majority of popular robust regression methods for high-dimensional data fall into

this framework, for example SparseLTS (Alfons et al. 2013), MM-LASSO (Smucler and

Yohai 2017), MM-Bridge (Arslan 2016), Tukey-Lasso (Chang et al. 2018), PENSE/PENSEM
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(Cohen Freue et al. 2019), the penalized τ estimator (Mozafari-Majd and Koivunen 2025)

and the adaptive PENSE/PENSEM (Kepplinger and Cohen Freue 2023). Some of these

estimators, such as MM-LASSO or adaptive PENSE, are two-step estimators where both

stages seek a minimizer of (1), but employ different loss functions and/or different penalties.

To apply these estimators successfully in practice, the appropriate value for the hyper-

parameter λ, which governs the strength of the penalty, must be chosen in a data-driven

fashion. The solution path, that is, the minimizers of (1) for a decreasing sequence of

penalization levels, is usually expected to be smooth. In other words, a slight relaxation of

the penalization level is expected to lead to only a small change in the minimizer. Unfortu-

nately, this expectation often does not align with reality when employing robust estimators,

as detailed in Section 2. This is the main reason why common strategies to select λ often

fail for robust estimators and why our focus in this work is on selecting λ. In cases where

the penalty term depends on additional hyperparameters, an appropriate choice for those

most often hinges on a reliable and stable selection of λ.

Stability and reliability of the regression estimator in (1) amid contamination is achieved

through a robust loss function, ℓ. A common choice is the S-loss function given by ℓS(r) =

1
2
σ2
M(r), with σ2

M(r) defined implicitly by

δ =
1

n

n∑

i=1

ρ

(
ri

σ2
M(r)

)
. (2)

Here, δ ∈ (0, 0.5) is a tuning constant that determines the finite sample breakdown point of

the S-loss (Cohen Freue et al. 2019; Kepplinger 2023), i.e., the proportion of observations

that can be arbitrarily contaminated without leading to an infinitely biased estimate. The

S-loss is used by PENSE and S-Ridge (Maronna 2011) which also forms the first stage

of MM-LASSO, adaptive PENSE and adaptive PENSEM. The M-loss is another popular

robust loss function, ℓM(r) = 1
2n

∑n

i=1 ρ(ri/s), and requires a predetermined scale, s > 0.
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It is utilized in the second stages of MM-LASSO, PENSEM and adaptive PENSEM where

the first stage is used to estimate the residual scale s and the penalty loadings for the

adaptive EN penalty. For the M- and S-loss functions, a bounded and therefore non-

convex ρ function is necessary to achieve high robustness towards arbitrarily contaminated

data points. Common ρ functions behave like the square function around 0 and smoothly

transition to a constant beyond a certain cutoff value. Typical examples for ρ are Tukey’s

bisquare or the linear-quadratic-quadratic (LQQ) function (Koller and Stahel 2011).

Another choice for ℓ is the τ -loss, an attempt to improve the efficiency of S-estimators. It

is based on two bounded functions, ρ and ρ1, and is defined as ℓτ (r) =
σ2
M

(r)

nδ1

∑n

i=1 ρ1(ri/σM(r)).

The SparseLTS estimator, on the other hand, is a trimmed least squares (LTS) estimator

that considers only the h smallest residuals, n/2 < h < n, with ℓLTS(r) =
∑h

i=1 |r|
2
(i), where

|r|(i) are the ordered absolute residuals.

A common feature of all these robust loss functions is their non-convexity, which is

necessary to achieve high robustness against arbitrary contamination. This non-convexity

leads to computational challenges which have been widely discussed in the literature. How-

ever, in combination with the penalization, the non-convexity also poses a substantial issue

for hyperparameter selection. To our knowledge, this has not yet been formally acknowl-

edged or discussed. Yet, as we will show in Section 2, this issue often restricts the practical

utility of robust penalized regression estimators and hinders their adaptation.

A substantial body of literature on penalized regression estimators is concerned with

fit-based criteria to select λ, such as AIC and BIC. These criteria have also been adapted

for robust estimation, e.g., the robust BIC criterion (Alfons et al. 2013) or the predictive

information criterion (She et al. 2021). In practice, however, CV is the dominating strategy

for multiple reasons: it allows comparisons between different estimators and does not rely

on a consistent and robust estimate of the scale, which itself is a very challenging and

unsolved problem in high dimensions (Dicker 2014; Fan et al. 2012; Loh 2021; Maronna
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and Yohai 2010; Reid et al. 2016).

The primary objective of this paper is to select the overall penalization level, λ, for

robust penalized estimators (1). The main contribution is twofold. First, in Section 2,

we illuminate and investigate the major drivers causing issues in applying CV to robust

penalized estimators, i.e., the combination of a non-convex objective function with local

minima driven by contaminated observations and the penalty. Second, we propose a new,

robust, and reliable CV strategy, called Robust Information Sharing CV (RIS-CV), to

mitigate these issues in practical applications. In Sections 4 and 5 we demonstrate that

RIS-CV can be applied with different robust penalized estimators and leads to more reliable

and stable hyperparameter selection than standard CV in a variety of settings.

1.2 Notation

The index set of the complete training data for the n observations is denoted as T =

{1, . . . , n}. The subsets of the training data used to estimate the parameters in the K

CV folds are denoted by T1, . . . ,TK , Tk ⊂ T . The set of minima for a given index set

T and penalty parameter λ is denoted by BT
λ =

{
β̂ : ∇β

O(β̂;T , λ) = 0
}
. We assume

that only the Z ≥ 1 best minima are retained and that the minima are ordered by the

value of the objective function, i.e., in a set of minima BT
λ = {β̂1, . . . , β̂Z}, O(β̂1;T , λ) ≤

O(β̂2;T , λ) ≤ · · · ≤ O(β̂Z ;T , λ). If the index set on which the objective function is

evaluated is obvious from the context, T will be omitted from the notation.

None of the non-convex optimization routines employed in this paper can guarantee

to find the actual global minimum. Any notion of a “global” minimum is therefore to be

understood as the local minimum with the smallest objective function value among all local

minima uncovered by the non-convex optimization routine.
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2 Cross-validation for Robust Penalized Estimators

Before we shed light on why standard or “näıve” CV (N-CV) fails for robust penalized

estimators, we give a brief review of N-CV commonly used for robust and non-robust

penalized regression estimators.

For N-CV, we first compute the global minimizers of (1) on a grid of λ values, L =

{λ1, . . . , λq}, λ1 > λ2 > · · · > λq > 0, using the complete training data {(yi,xi) : i ∈ T }.

The number of values, q, typically ranges from 50–100, with larger q giving a “finer reso-

lution” and hence better chances for finding a good solution, but at higher computational

costs. To estimate the prediction accuracy of these minimizers, N-CV randomly splits

the training indices T into K approximately equally sized subsets, or folds, F1, . . . ,FK

with Fk ⊂ T such that
⋃

k Fk = T and Fk ∩ Fk′ = ∅ for all k ̸= k′. In each of

these CV folds, the global minimizers of (1) are computed using only the observations in

Tk = T \ Fk over the same penalty grid L as for the complete training data. Denoting

these global minimizers by β̂k,λ, we compute the prediction errors on the left-out obser-

vations as ei,λ = yi − x
⊺

i β̂k,λ,i ∈ Fk. The prediction accuracy of the estimate β̂λ is then

estimated for each λ ∈ L by summarizing these prediction errors, usually using a measure

of their scale. We will denote this measure of prediction accuracy as E(λ). The prevalent

choice for E(λ) is the root mean squared prediction error (RMSPE),

R̂MSPE(λ) =

√√√√ 1

n

n∑

i=1

e2i,λ.

In the potential presence of contamination, however, it is commonly argued (Cohen Freue et

al. 2019; Kepplinger 2023; She et al. 2021; Smucler and Yohai 2017) that robust estimates of

the prediction accuracy should be used since contamination in the response is not expected

to be well predicted by the model. Robust choices are the mean absolute prediction error
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(MAPE) or the τ -size (Yohai and Zamar 1988) of the prediction errors:

τ̂(λ) =

(
Med

i=1,...,n
|ei,λ|

)√√√√ 1

n

n∑

i=1

min

(
cτ ,

|ei,λ|

Medi=1,...,n |ei,λ|

)2

, cτ > 0.

To reduce the Monte Carlo error incurred by a single CV split and to obtain an estimate

of the variance of the error measure, CV can be repeated with different random splits. With

R replications of K-fold N-CV, the estimated prediction accuracy using metric E is

Ê(λ) =
1

R

R∑

r=1

Ê(r)(λ), SD
(
Ê(λ)

)
=

√√√√ 1

R

R∑

r=1

(
Ê(r)(λ)− Ê(λ)

)2

.

The penalty level λ is then either chosen as the one that leads to the smallest measure

of the prediction error, λ̂ = minλ∈L Ê(λ), or, to mitigate overfitting, as the one whose

prediction error is within one standard deviation of the minimum, i.e., the “1-SE rule:”

λ̂1-SE = max
{
λ ≥ λ̂ : Ê(λ) ≤ Ê(λ̂) + SD

(
Ê(λ̂)

)}
. (3)

In practice, great utility lies in a plot of the prediction accuracy against the penalization

strength. This “CV curve” plots the estimated prediction accuracy and the estimated

standard error against the penalization strength or the L1 norm of the estimates at different

λ ∈ L. The practitioner can then choose the λ leading to the best prediction accuracy or

may select a value that better balances model complexity with prediction accuracy.

Figure 1 shows the CV curve for a classical EN estimator (least squares; left) and the

robust adaptive PENSE estimator (right) in the biomarker discovery study from Section 4.

It is obvious that the CV curve provides valuable insight into the effects of penalization

and the overall prediction accuracy of the models on the penalization path, with two

striking observations. First, the classical adaptive EN estimator does not seem to perform
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Figure 1: Estimated prediction performance of the non-robust adaptive EN estimator (left) and the
robust adaptive PENSE (right) in the CAV study from Section 4 as estimated by N-CV.

particularly well in this example, with the intercept-only model (at the far right with the

highest considered penalization strength) yielding almost as good a prediction accuracy as

the less sparse estimates. Clearly, a practitioner may question the applicability of the EN

estimator or the linear regression model in this case. Second, the CV curve for adaptive

PENSE is highly non-smooth. On the other hand, adaptive PENSE seems to find models

with better prediction accuracy than the intercept-only model, but the standard errors

are large, and the highly irregular shape of the CV curve undermines confidence in those

estimates. In Sections 4 and 5 we demonstrate that the poor performance of the classical

EN estimator is likely due to contamination. But the other question is why small changes

in λ lead to such drastic changes in the estimated prediction accuracy for adaptive PENSE.

Remark 1.A slight variation of N-CV described above, which is sometimes used in prac-

tice, is to compute the global minimizers only at the λ̂ chosen by N-CV, rather than for

every value in L. While this does not affect the choice of λ̂, it can lead to faster com-

putations in some settings. However, since (1) is usually solved by an iterative algorithm

that can be started with the solution(s) from the previous slightly higher penalty level, the

computational overhead of computing the entire regularization path is typically small.

Remark 2. The non-convexity of (1) requires a careful choice of starting values for the

iterative optimization algorithm. The most prevalent strategy to obtain starting values for
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robust estimators is to compute non-robust penalized estimates on “outlier-free” subsets of

the data. A common approach is to consider many random subsets of size less than n−o >

1, where o is a conservative upper bound on the number of contaminated observations,

in the hope that at least some of those subsets are free of contamination and hence give

appropriate starting values close to the global minimum (e.g., Alfons et al. 2013). Another

option is a guided search for outlier-free subsets, e.g., the extension of the Peña-Yohai

method (Peña and Yohai 1999) to penalized estimation (Cohen Freue et al. 2019; Maronna

2011). A detailed discussion on finding appropriate starting values for robust regression

can be found in Cohen Freue et al. (2019) and Maronna, Martin, et al. (2019). For cross-

validation, obtaining good starting values in each CV fold is computationally very taxing.

A common computational shortcut (e.g., Khan et al. 2010) circumventing this problem is

to use the minimum from the complete training data as the starting point in the CV folds.

2.1 Failings of N-CV for Penalized Robust Estimators

In short, the blame for the non-smoothness of the N-CV curve is on the non-convexity

of the objective function combined with the presence of contamination. In the following,

we highlight the issues that the non-convexity and contamination create for CV of robust

penalized estimators. Together, these issues may lead to an undesirable coefficient estimate

and a CV prediction error that is substantially biased, has high variance, or both.

Non-smoothness of the penalization path. Due to the non-convexity of the loss

function, (1) can have more than one minimum. While robust penalized estimators are

usually defined as the global minimizer of (1), the “global” designation assigned to the

minimum with the smallest objective function value can be misleading. Although the

objective function (1) is smooth in λ, the path of the global minimum is not necessarily

smooth. In Proposition 1 in the supplementary material, we show that in the simple
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Figure 2: Demonstration of a non-smooth regularization path for a penalized M-estimator of regression
in a simulation setting detailed in Section S.1.1 of the supplementary materials. The dots represent
local minima at each penalization level, while blue dots indicate the minimum that is designated
as the “global” minimum, i.e., has the smallest value of the objective function at that particular
penalization level λ.

univariate setting and under certain conditions, we can find at least one λ where the path

of the global minimum of a penalized M-estimator, denoted by β̂∗(λ), has a discontinuity,

i.e., limδ→0 |β̂
∗(λ − δ) − β̂∗(λ + δ)| > 0. We further provide a simple example setting

where these conditions are satisfied with positive probability. Figure 2 shows an instance

where the penalized M-estimator has two minima for each λ in L, one at β ≈ 0.5 and

one at β ≈ 100. The minima that are designated as the “global” minima, however, have

a discontinuity around λ = 0.003, jumping from the local minimum at β ≈ 100 to the

minimum at β ≈ 0.5. In high-dimensional problems, the non-smoothness of the global

minimum is even more severe, as robust loss functions tend to have more local minima as

the dimension of the covariates increases.

The primary reason to focus on the global minimum of (1) is that it may possess desir-

able statistical properties. The global minimum of the objective function of PENSE and

adaptive PENSE, for instance, is root-n consistent, finite-sample robust, and for adaptive

PENSE it possesses the oracle property (Kepplinger 2023). These properties, however, only

pertain to the global minimum at a properly chosen penalty parameter λ∗. In practice,
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when many different penalization levels must be tried, considering only the global minimum

is fallacious. In the example scenario from Figure 2, the majority of the data follow a linear

regression model with β⋆ = 100, and therefore an estimate close to that would lead to a

reasonably small prediction error for all λ. However, if we were to consider only the global

minima (blue points), a stark difference would be seen between prediction accuracy with

small versus large λ values. In situations where a larger λ value and therefore a sparser

solution may be preferable, restricting attention to only the global minimum would prevent

the selection of a good estimate.

Mismatch between the global minima and the N-CV solutions. A related problem

arises when estimating the prediction accuracy of the minima of the objective function using

N-CV. The objective function evaluated on the randomly chosen CV training indices, Tk,

also possesses multiple minima. Whether the global minimum in Tk describes a similar

signal as the global minimum on the full training data, T , however, is unknown. Referring

again to the example in Figure 2, if the global minimum on Tk for a small λ = 0.001 is

around 0.5, it would contain little information for estimating the prediction accuracy of the

global minimum on T , which is around 100. As the number of local minima increases, so

too does the probability that the global minimum on Tk is unrelated to the global minimum

on T . Among the K CV folds, some may yield a global minimum related to that of the full

dataset, while others do not. With N-CV, however, the prediction accuracy is estimated

from both the related and unrelated minima, potentially introducing substantial bias and

hence leading to nonsensical results.

Robust measures of prediction accuracy for N-CV, like the MAPE or the τ -size, cannot

solve this problem either. The unrelated minima could give prediction errors that appear

as outliers. Combined with the truly contaminated observations in the data, they may

outnumber the useful prediction errors and hence break the robust measures and lead
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to unbounded bias. Repeating N-CV many times helps to mitigate these instabilities,

but depending on the severity of the mismatches, a large number of replications may be

necessary. This creates a computational bottleneck and can also lead to an overestimation

of the variance of the prediction accuracy.

3 Robust Information Sharing CV

We now present Robust Information Sharing CV (RIS-CV). The central component of RIS-

CV is the tracking of multiple minima. This requires a strategy to match minima on the

complete training data with the minima from the CV folds.

Tracking multiple minima. The main component of RIS-CV is to keep track of multiple

minima for the complete training data, T , and all the CV folds, Fk, k = 1, . . . , K. For

every λ ∈ L we retain Z
(T )
λ ≥ 1 unique minima, denoted by BT

λ . To keep computational

complexity at bay, we limit the maximum number of unique minima to Z, ensuring that

Z
(T )
λ ≤ Z. In the simulation study in Section 5, for example, we set Z = 10.

We have shown in Section 2 that the regularization path may not be smooth if Z =

1. It is also easy to see that relaxing the penalty increases the number of local minima

monotonically. Moreover, if β̂(λ) ∈ BT
λ is a minimum of the objective function for λ,

then for any δ > 0 there exists an ϵ > 0 such that there is a minimum β̂(λ − ϵ) with

∥β̂(λ − ϵ) − β̂(λ)∥ < δ. Although this may not be the global minimum of the objective

function at λ − ϵ, tracking multiple minima increases the chances that β̂(λ − ϵ) ∈ BT
λ−ϵ.

Instead of a single, non-smooth regularization path, RIS-CV therefore captures multiple

smooth regularization paths.

Remark 3. Common software implementations for estimators based on (1) employ an

“exploration-concentration” strategy, i.e., explore all the provided starting values for a
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few iterations, and iterate only the “most promising” solutions until convergence. These

implementations nevertheless return and utilize only the global minima for estimation.

In RIS-CV, on the other hand, we harness these multiple smooth regularization paths to

improve the reliability of the regularization path and the estimated CV curve. In fact,

too aggressive screening of minima in the exploration stage is harmful to RIS-CV, as it

depletes the final set of minima of diverse solutions. To apply RIS-CV successfully in

practice, implementations must therefore be adjusted to screen out only likely duplicates,

without eliminating solutions based on their objective function value.

Matching minima based on similarity. To estimate the prediction error of the minima

in BT
λ , they must be matched with the corresponding minima in each CV fold, BTk

λ . We

propose to measure the similarity of the minima based on the robustness weights associated

with these minima, leveraging the fact that the loss function in (1) can be recast as a

weighted least-squares loss. The weight for the S-loss function, for example, is given by

wi(r) =
ρ′(r̃i)/r̃i∑
k∈D

ρ′(r̃k)r̃k
, i ∈ T , (4)

where r̃i = ri/σ̂M(r) is the residual scaled by the M-scale estimate.

The weights encode the “inlyingness” of an observation relative to the regression hyper-

plane, indicating how well each observation conforms to the estimated model. An obser-

vation close to the hyperplane receives a larger weight, while an observation far away and

hence deemed outlying receives a weight of 0. For RIS-CV we define the similarity between

two coefficient vectors, ω(β1,β2;I ), as the correlation between the corresponding weight

vectors w(r1) and w(r2) over index set I ,

ω(β1,β2;I ) =

1
|I |

∑
i∈I

wi(r1)wi(r2)− w(β1)w(β2)√[
1

|I |

∑
i∈I

wi(β1)
2 − w(β1)

2
] [

1
|I |

∑
i∈I

wi(β2)
2 − w(β2)

2
] , (5)
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with rli = yi − x
⊺

iβl, l ∈ {1, 2}, i ∈ I and w(rl) =
1

|I |

∑
i∈I

wi(rl).

We utilize the weight-similarity ω(β1,β2;I ) to match the minima in BT
λ with their

closest counterpart in each CV fold, BTk

λ . Specifically, for a set of minima BT
λ we define its

collection of CV-surrogates from fold k = 1, . . . , K as

B̌Tk

λ =



argmin

β∗∈B
Tk
λ

ω(β∗,βj;Tk) : j = 1, . . . , ZT

λ ,βj ∈ BT

λ



 . (6)

Hence, the q-th element in B̌Tk

λ is the minimum from CV fold Tk most similar to the q-th

element in BT
λ . There can be duplicates in B̌Tk

λ .

Matching minima from the complete training data to their surrogates in each CV fold

allows us to more reliably estimate the prediction accuracy of each minimum than relying

solely on the ordering of the minima based on their objective function value. With a non-

convex loss function, the minimum with the lowest objective value in BT
λ may capture a

very different signal than the minimum with the lowest objective value in BTk

λ . In contrast,

our strategy matches each minimum in BT
λ with a minimum in BTk

λ that best agrees with

the outlyingness of the observations in CV fold Tk.

The weight-based similarity has several advantages over distances between coefficient

estimates or residuals. First, it is dimensionless and independent of the number of co-

variates, covariance structure, or response scale. Second, observations that are deemed

contaminated do not affect the weight-similarity, while measures using residuals can be

arbitrarily affected. Third, contaminated observations often cause local minima; therefore,

minima that agree on the outlyingness of observations thus likely describe a similar signal.

The approximation for CV estimates proposed by Khan et al. (2010) can be considered

a strategy to keep the minima in BTk

λ close to the minima in BT
λ . Using BT

λ as starting

points and limiting the algorithm to a few iterations to compute BTk

λ , it is likely that the

resulting minima are close to the starting points. However, for penalized robust estimators
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and high-dimensional data, it is in general difficult to choose a fixed number of iterations

that yields a good balance between adapting to the data in the CV fold and staying close

to the minima in BT
λ . Our matching scheme, on the other hand, does not require such

tuning and hence leads to more reliable estimates of the prediction accuracy, albeit at the

cost of more expensive computations.

Once the CV-surrogates from each CV fold Tk and each penalty parameter λ ∈ L are

determined, RIS-CV utilizes the robustness weights to quantify the prediction accuracy of

every minimum β̂q ∈ BT
λ . The prediction accuracy is estimated by a weighted standard

deviation of the CV prediction errors, where the weights reflect the outlyingness of each

observation as estimated on the complete training data:

Ê(2)
q (λ) =

√√√√ 1∑
i∈T

wi(rq)

K∑

k=1

∑

i∈Fk

wi(rq)
(
yi − x

⊺

i β̂
k

q

)2

, q = 1, . . . , |BT
λ |, (7)

where rk = y − Xβ̂k are the residuals from the complete training data and β̂
k

q ∈ B̌Tk

λ

is the CV-surrogate of the q-th minimum. This effectively ignores the prediction error of

observations that are deemed contaminated by that particular β̂q. For heavy-tailed error

distributions, a weighted mean absolute error may be more appropriate,

Ê(1)
q (λ) =

1∑
i∈T

wi(rq)

K∑

k=1

∑

i∈Fk

wi(rq)
∣∣∣yi − x

⊺

i β̂
k

q

∣∣∣ , q = 1, . . . , |BT
λ |. (8)

Contaminated observations cannot be expected to be predicted well by the model, and their

prediction errors should therefore not affect the overall assessment of an estimate’s predic-

tion accuracy. Robust estimators assign a zero weight to a bounded number of observations

(e.g., S-estimators assign zero weights to fewer than ⌊δn⌋ observations). Therefore, many

of the good, inlying observations will have a weight greater than 0, even if β̂q describes an

illicit signal driven by contamination. Consequently, the weighted metric will propagate
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the high prediction errors for these observations and the illicit signal will thus have poor

prediction accuracy.

Compared to the usual robustification of N-CV through robust measures of the pre-

diction error, our approach connects the estimated prediction error more closely to the

estimated outlyingness, reducing the risk of misrepresenting an estimate’s prediction accu-

racy. While robust measures such as the τ -size guard against the effects of arbitrarily large

prediction errors, these measures do not discriminate whether the large prediction errors

are due to observations that are deemed contaminated or not. Therefore, even inliers are

allowed to have very large prediction errors. This disconnect between the outlyingness

of the observations and their effect on the estimated prediction error can lead to a high

variance in the estimated prediction accuracy.

Remark 4. As suggested by an anonymous reviewer, an alternative is to use the average

weights from the CV fits instead of the weights from the fit to the full training data. Specif-

ically, one could replace wi(rq) in equations 7 and 8 by w∗
iq =

1
K−1

∑
k:i∈Tk

wi

(
y −Xβ̂

k

q

)
.

These weights reduce the dependence of the estimated prediction error on the full fit and

hence can alleviate the potential underestimation of the actual prediction error caused by

overfitting the complete training data. The R package in the supplementary materials sup-

ports this alternative choice of weights, although our numerical experiments in Section 5

suggest that this approach often leads to sparser solutions with worse prediction accuracy.

Similar to N-CV, the prediction accuracy estimated by RIS-CV depends on the ran-

dom CV splits and is thus a stochastic quantity. RIS-CV should therefore be repeated

several times to assess the variability of the estimate, but the number of replications can

usually be much smaller than the number of replications needed for N-CV. We generally

suggest repeating RIS-CV 5 to 20 times, depending on the complexity of the problem. For
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more complex problems, higher variability in the estimated prediction accuracy may occur,

requiring additional RIS-CV replications. The RIS-CV strategy is detailed in Algorithm 1.

For faster computations, the R package in the supplementary materials performs step 1

in Algorithm 1 for all λ ∈ L before the replicated RIS-CV (steps 2 through 10) is applied.

This is done to efficiently utilize the set of minima from the previous penalization level

λ′ > λ, BT
λ′ as starting points.

The RIS-CV procedure yields estimates of the prediction accuracy for up to Z minima at

each level of the penalty parameter, and the “optimal” minimum can be selected in several

ways. We simply select the minimum with the best prediction accuracy for each λ ∈ L,

q∗λ = argminq=1,...,|BT
λ

| Êq(λ). These estimates together with the associated standard errors

can be plotted (i.e., the RIS-CV curve) to judge the model’s suitability for the problem at

hand and to select the desired penalty parameter. Standard errors could also be considered

when choosing q∗λ, but the numerical experiments below do not suggest an improvement over

the simpler strategy applied here. The R package in the supplementary materials returns

the estimated prediction accuracy and its standard error for all minima and therefore allows

the user to utilize more sophisticated strategies or to fine-tune RIS-CV.

Remark 5. In practical applications, we suggest first running a small number of RIS-CV

replications with a large number of minima, e.g., Z = 50, and plotting the CV curve.

The R package in the supplementary material allows the user to construct CV curves for

different Z and different CV measures (the weighted RMSPE 7, the weighted MAPE 7 or

their variants using the average weights from the CV fits as in Remark 4). If a smaller Z

also yields a smooth CV curve, further CV replications can be added with this smaller Z to

save computation time. On the other hand, if the regularization path and/or the RIS-CV

curve are still highly irregular, the user can try increasing Z and investigating different

measures for the prediction error.
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Remark 6. Computation speed of RIS-CV can be improved by using only the minima from

the fit to the complete training data as starting points for the CV folds, similar to the

shortcut used in Khan et al. (2010). For RIS-CV, all the local minima from the complete

training data, not only the global minimum, can be leveraged as starting points. This

restricts the search space around local minima of interest. However, in some situations,

the CV surrogates identified by this strategy are inferior to the CV surrogates obtained by

re-computing the starting points. Section S3.3 in the supplementary materials shows the

differences between re-computing the starting points for each CV fold and using only the

minima from the complete training data for RIS-CV in the simulation study of Section 5.

In high-dimensional problems, this computational shortcut may be necessary when re-

computing starting points for each CV fold becomes infeasible. The R package in the

supplementary materials supports this shortcut to ensure applicability of RIS-CV to a wide

range of applications. In one of the applications of RIS-CV shown in the supplementary

materials (Section S2.1), for instance, this computational shortcut is used to reduce the

computation time to a reasonable level without sacrificing prediction accuracy.

4 Biomarker Discovery Study

We show the benefits of RIS-CV over näıve CV for developing a biomarker for cardiac

allograft vasculopathy (CAV) based on protein expression levels. In this application, we

use adaptive PENSE (Kepplinger 2023), a two-stage estimator where both stages use the

S-loss in (1), ℓS, but with different penalty terms. The first stage is an S-Ridge (Maronna

2011) estimator, i.e., P (β) = ∥β∥22. The second stage uses an adaptive EN penalty, P (β) =

∑p

j=1 |β̌j|
−1

(
1−α
2
β2
j + α|βj|

)
, where β̌ is the estimate from the first stage. We apply N-CV

and RIS-CV in both stages of this estimator.

CAV is a life-threatening complication after receiving a cardiac transplant characterized
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Algorithm 1 Robust Information Sharing CV

Input: Standardized data set, D = {(yi,xi) : i ∈ T }, fixed hyperparameter, λ, the number
of folds, K, the maximum number of minima retained, Z, and the number of cross-
validation replications, R.

1: Compute up to Z unique local minima of (1) using all observations T = {1, . . . , n}
of D in the non-convex optimization algorithm. Denote this set by by BT

λ .
2: for r = 1, . . . , R do

3: Split the data into K cross-validation folds, denoted by F1, . . . ,FK , such that
Fk ∩ Fk′ = ∅, for k ̸= k′, and

⋃K

k=1 Fk = T .
4: for k = 1, . . . , K do

5: Compute up to Z unique local minima of (1) using only the observations in Tk =
T \ Fk, denoted by BTk

λ .

6: From BTk

λ determine the CV-surrogates B̌Tk

λ according to (6).
7: end for

8: Estimate the robust weighted RMSPE (7) or MAPE (8) for each minimum β̂q ∈ BT
λ ,

q = 1, . . . , |BT
λ |, denoted by Ê

(r)
q (λ).

9: end for

10: Compute the average robust weighted prediction errors and their standard errors

Êq(λ) =
1

R

R∑

r=1

Ê(r)
q (λ), ŜDq(λ) =

√√√√ 1

R− 1

R∑

r=1

(
Ê

(r)
q (λ)− Êq(λ)

)2

.

by narrowing of vessels that supply oxygenated blood to the heart. The usual clinical

biomarker for CAV is the percentage of diameter stenosis of the left anterior descending

artery. The data is obtained from Kepplinger and Cohen Freue (2023), who use a synthetic

replicate of the restricted original data. The goal is to predict the stenosis of the artery

using the expression levels of the 81 protein groups available for a total of N = 37 patients.

The adaptive PENSE estimator is tuned to a breakdown point of 20% and uses an EN

penalty with α = 0.8, following the analysis in Kepplinger and Cohen Freue (2023). For

RIS-CV, up to Z = 30 local minima are tracked.

Figure 3 shows the CV curves and the regularization path of adaptive PENSE with

5-fold CV. The top parts of panels (a) and (b) show two independent CV runs for N-CV

and RIS-CV, respectively. It is clear that the individual CV curves from RIS-CV are more

consistent in their shape than those from N-CV.
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Figure 3: (a) Individual CV curves from 5-fold N-CV (top) and the average ±1 SD over 10 replications
(bottom). (b) Individual CV curves from 5-fold RIS-CV (top) and the average ±1 SD over 10
replications (bottom). (c) L1 norm (excluding the intercept) of the selected minimum of the adaptive
PENSE objective function.

The benefits of RIS-CV become more obvious when averaging 10 replications of 5-fold

CV, as shown in the bottom parts of Figures 3(a) and (b). Even after averaging, it is

difficult to identify an appropriate penalization level with N-CV. The intercept-only model

and the model at λ-index = 17 have similar prediction accuracy, and the 1-SE rule would

select a penalization level in between (λ-index= 9), even though these models are very

different (0 vs. 10 vs. 4 non-zero slope coefficients). RIS-CV, on the other hand, identifies a

tight range of penalization levels around λ-index = 29 that seem to yield the best prediction

accuracy in this data set, and the 1-SE rule would select λ-index = 18. The smoothness and

stability of the RIS-CV curve are clearly advantageous in identifying a good penalization

level in this application.

We further analyze the smoothness of the regularization path, in terms of the L1 norm

of the slope coefficients for the minima selected by N-CV and RIS-CV (Figure 3c). N-CV

selects the global minimum at each penalization level, while RIS-CV selects the minimum
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with the best estimated prediction accuracy. RIS-CV’s flexibility in choosing a non-global

minimum results in a smoother CV curve and regularization path.

In Section S2 of the supplementary materials, we present two additional applications

with similar conclusions as in this CAV study. In these applications, we further estimate

the out-of-sample (OOS) prediction error on an independent test set. The effects of the

local minima in these applications are again noticeable, but less pronounced than in the

CAV study. Nevertheless, RIS-CV leads to smoother CV curves and regularization paths,

as well as better OOS prediction accuracy.

5 Simulation Study

In the biomarker discovery study and the applications in the supplementary materials, we

demonstrate that RIS-CV leads to smoother CV curves and in turn to better selection of

the penalty parameters. In this simulation study, we illustrate that the minimum selected

by RIS-CV, which is not necessarily a global minimum for the selected penalization level,

can lead to a better out-of-sample prediction. Throughout this study, we compare RIS-CV

with N-CV for the PENSE estimator. We consider a data-generating process (DGP) similar

to Kepplinger (2023). The data is generated according to the linear model yi = x
⊺

iβ
0 + εi,

i = 1, . . . , n, where xi is the p-dimensional covariate vector, β0 = (1, . . . , 1, 0, . . . 0)⊺ is

the true coefficient vector with the first s = ⌊log(n)⌋ entries equal to 1 and the others

are all 0. The covariates xi follow a multivariate t4 distribution and AR(1) correlation

structure, Cor(Xj, Xj′) = 0.5|j−j′|, j, j′ = 1, . . . , p. The i.i.d. errors, εi, follow a symmetric

distribution, F , with a scale chosen such that β0 explains about 50% of the variation in yi

(i.e., SNR ≈ 1). For this, the empirical variance in ε is measured by the empirical standard

deviation if F is Gaussian and by the τ -size for other error distributions.

We consider different scenarios for the number of observations, n ∈ (100, 200), the
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number of available predictors, p ∈ (50, 100, 200), and error distribution, F , (Gaussian,

Laplace, Symmetric Stable with stability parameter α = 1.5). Good leverage points are

introduced by multiplying the (p− s)/2 largest covariate values for 25% of observations by

8. These values are introduced in covariates with a true coefficient of 0 and hence should not

affect the estimators. Furthermore, 25% of the observations come from a different model

with three distinct contamination signals. We would expect that the objective function

has at least one local minimum close to each of them. The contamination signals all

follow the linear model but with a different β0 and further introduce leverage points in the

truly relevant covariates. The details are described in Section S3.1 of the supplementary

materials.

For each of the 18 settings, we repeat the simulation 100 times and compare the pre-

diction performance of the solutions/penalty levels selected by N-CV and RIS-CV with

K = 5 folds and R = 5 replications. We select the penalization level according to the 1-SE

rule (3). Across all simulations, Z = 10 solutions are retained for RIS-CV, and PENSE is

tuned to a breakdown point of 33% and α is set to 0.5.

Figure 4 summarizes the simulation results in terms of the prediction accuracy. The

boxplots show the relative prediction error attained with RIS-CV versus the prediction

error attained with N-CV for replication r = 1, . . . , 100 of setting s = 1, . . . , 18,

RelPredErr(r,s) =





√

Ey,x

[

(y−x⊺β̂
(r,s)
RIS-CV)2

]

√

Ey,x

[

(y−x⊺β̂
(r,s)
N-CV)2

]

− 1 if s uses Gaussian errors,

Ey,x

[∣

∣

∣
y−x

⊺β̂
(r,s)
RIS-CV

∣

∣

∣

]

Ey,x

[∣

∣

∣
y−x⊺β̂

(r,s)
N-CV

∣

∣

∣

] − 1 if s uses any other error distribution,

(9)

where β̂RIS-CV and β̂N-CV are the estimates chosen by RIS-CV and N-CV. The expectations

are computed via a Monte Carlo approximation using 10,000 draws.

In most simulation runs, RIS-CV selects solutions with better prediction accuracy than

N-CV. Section S3.2 of the supplementary materials includes additional results. Common
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Figure 4: Relative prediction error attained with RIS-CV vs. N-CV according to (9) in 100 simulation
replications across 18 different settings. The penalty parameter is chosen by the 1-SE rule (3). The
gray asterisks depict the mean. Negative differences mean the solution chosen by RIS-CV leads to
better prediction accuracy than N-CV.

measures of smoothness indicate that RIS-CV produces a smoother CV curve than N-CV,

offering better guidance on the optimal penalization level. The supplementary materials

also compare RIS-CV with the two-step approximation of Khan et al. (2010) for N-CV,

showcasing improvements by considering more local minima.

6 Conclusion

Cross-validation is the prevalent data-driven method for selecting models with penalized

estimators, including robust penalized estimators. We show that standard CV (N-CV)

is unstable when applied to non-convex robust penalized regression estimators defined as

the minimizer of (1). Our theory and empirical results reveal that multiple local minima,

caused by contamination, can create highly non-smooth penalization paths and CV curves.

We further highlight that the local minimum with the smallest value of (1) at a given λ,

i.e., the “global” minimum at λ, is not necessarily the minimum closest to the true signal

due to the interaction between the robust loss and the penalty term. This nonsmoothness

can in turn lead to low-quality estimates of the prediction accuracy, and thus an ill-guided

selection of the penalization level. Such issues become more pronounced as the complexity
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of the data analysis task increases. The instability of N-CV has been a major obstacle for

the utility and adoption of robust penalized estimators.

In this paper, we therefore propose a novel strategy, RIS-CV, where we retain all local

minima uncovered by the numerical algorithm to optimize (1) and share contamination

information from these minima on the complete training data with the individual cross-

validation folds. Our results show that leveraging the robustness weights associated with

each local minimum makes it possible to (a) determine which minima in the CV folds

correspond most closely with the minima on the full data set and (b) estimate the prediction

accuracy of all of those local minima, not only the global minimum. This allows RIS-CV

to select the local minimum with the best prediction accuracy, which is not necessarily the

global minimum as discussed in Section 2.1, and thus often yielding a smoother CV curve.

A single replication of RIS-CV is in general computationally more expensive than N-CV

due to the requirement to track many more minima. However, the overall computation

time is most often comparable to N-CV because fewer CV replications are necessary to

obtain a smooth and informative CV curve.

The proposed matching scheme currently does not differentiate between good and poor

matches. The most similar CV solution is chosen as a surrogate, regardless of the actual

similarity. Since the metric is a unitless correlation coefficient, thresholding rules could

be developed in the future to avoid using unrelated minima in RIS-CV. For example, one

could require CV surrogates to have a similarity of at least 0.75. Further research would be

necessary, however, to devise appropriate strategies to handle situations where some CV

folds do not yield a CV surrogate and how to properly choose the threshold. Moreover, the

smoothness of the regularization path and CV curve can be made a more explicit metric

in choosing CV surrogates. Similarly, better graphs could be devised to not only show the

CV curve for a single solution at each λ, but rather plot multiple smooth CV curves to

give the user more control over which solution to choose.
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The ideas developed here are not only applicable to robust penalized linear regression,

but can easily be extended to robust estimators for the generalized linear model (e.g.,

Avella-Medina and Ronchetti 2017; Bianco et al. 2022) or to smoothing parameter selection

in robust additive regression models (e.g., Kalogridis and Van Aelst 2023; Tharmaratnam

et al. 2010).

RIS-CV is a much-needed tool to improve the practicality, utility, and acceptance of

robust penalized estimators. Our numerical studies reveal that RIS-CV leads to smoother

CV curves, more reliable selection of the penalty parameter, and identification of the most

promising minimum of the objective function at the chosen penalization level. We show

that improved smoothness and identification of useful minima lead to better out-of-sample

prediction accuracy in a large-scale simulation study and in several applications. RIS-CV

thus improves the reliability of the robust model selection process and thereby instills more

trustworthiness in the results.

Supplementary Materials

The file supplemental.pdf contains further theoretical insights into the failures of näıve

cross-validation (Section S1), two more empirical studies in Section S2, and details about

the simulation settings along with additional results (Section S3).

The file codes.zip contains all codes and data sets to reproduce the results and figures

in this paper, alongside a copy of the pense R package (version 2.5.0-01), which can also be

found on CRAN (https://cran.r-project.org/package=pense). All codes are also available

on GitHub: https://github.com/dakep/riscv-empirical-studies.
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S1 Failures of Näıve Cross-Validation

S1.1 Non-smooth path of global minima

Here we demonstrate that the chances of the global minimum “jumping” between local

minima when the penalization level changes is non-negligible. The following proposition

shows that if there are two local minima (the “good” and the “bad” minimum), with the

bad minimum being much closer to the origin than the good minimum, the bad minimum

will take over from the good minimum as the global minimum when the penalization level

is increased. Under the stated conditions, the proposition is entirely deterministic. We will

show later that there are indeed situations in which the conditions for the proposition are

satisfied with non-zero probability.

Proposition 1. Consider a bounded robust loss function ρ with ψ(x) = ρ′(x) = 0 for |x| >

c1 > 0 and ψ′(x) ≥ 0 for |x| < c2 < c1 and c2 > 0. Assume that β̂c and β̂⋆ are the only two

minima of the objective function at a penalization level λ, that β̂c > 0, β̂⋆− β̂c ≫ 2c1/xmin,

where xmin = min{|xi| : xi ̸= 0}, and O(β̂c;λ) = O(β̂⋆;λ). Assume further that there exists

a subset of the n observations, C ⊂ {1, . . . , n}, such that |yi − β̂cxi| < c1 for all i ∈ C,

|yi − β̂⋆xi| < c1 for all i /∈ C, and that the cardinality of the set {i : xi = 0} is less than bn.

Then, for any δ with |δ| small enough, β̃c = β̂c − δ/Sc with

Sc =
1

n

∑

i∈C
ψ′
(

yi − (β̂c + νc)xi

)

x2i

and νc ∈ (0, δ) is a minimum of the objective function for penalization level λ+δ. Similarly,

with S⋆ = 1
n

∑

i/∈C ψ
′
(

yi − (β̂⋆ + ν⋆)xi

)

x2i and ν⋆ ∈ (0, δ), β̃⋆ = β̂⋆ − δ/S⋆ is another



minimum of the objective function. Furthermore,

O(β̂c + |δ|/Sc;λ− |δ|) > O(β̂⋆ + |δ|/S⋆;λ− |δ|), and

O(β̂c − |δ|/Sc;λ+ |δ|) < O(β̂⋆ − |δ|/S⋆;λ+ |δ|).

Therefore,

lim
δ̃→0

|β̂(λ− δ̃)− β̂(λ+ δ̃)| > 0.

In other words, under the above assumptions, the regularization path for parameter β has

a discontinuity at λ and hence is non-smooth.

Proof. The first step is to show that β̃c and β̃⋆ are minima of O(β;λ + δ). From the

assumptions, we see that for all i ∈ C, |yi − xiβ̂c| < c1 and either xi = 0 or |yi − xiβ̂⋆| ≥ c1.

For all i /∈ C, on the other hand, |yi − xiβ̂⋆| < c1 and either |yi − xiβ̂c| ≥ c1 or xi = 0.

Therefore,

d

dβ
ρ(yi − xiβ)

∣

∣

∣

∣

β=β̂c+η

=



















ψ
(

yi − xi(β̂c + η)
)

xi ̸= 0 if i ∈ C,

0 if i /∈ C,

for any small enough perturbation η. This shows that the derivative at β̂c is determined

solely by observations in C and, using the same arguments, we can show that the derivative

at β̂⋆ is determined solely by observations not in C. From this, we can further show that



n(λ+ δ) =
∑

i∈C
ψ(yi − (β̂c + η)xi)xi

⇔ n(λ+ δ) =
∑

i∈C
ψ(yi − β̂cxi)xi − ηψ′(yi − (β̂c + ν)xi)x

2
i

⇔ n(λ+ δ) = nλ− η
∑

i∈C
ψ′(yi − (β̂c + ν)xi)x

2
i

⇔ η = −
δ

1
n

∑

i∈C ψ
′(yi − (β̂c + ν)xi)x2i

,

where ν ∈ (0, η). Therefore, we have β̃c = β̂c −
δ
Sc

and if δ is small enough, Sc > 0.

Similarly, β̃⋆ = β̂⋆ −
δ
S⋆

with S⋆ > 0.

Next we need to show that O(β̃c;λ + δ) < O(β̃⋆;λ + δ) A Taylor series expansion of

O(β̂c + δ/Sc;λ+ δ) gives

O(β̂c + δ/Sc;λ+ δ) = O(β̂c;λ) + δβ̂c −
δ2

Sc

+
2δ2

S2
c

S̃c,

where S̃c =
∑

i∈C ψ
′(yi − xiξ)x

2
i > 0 and ξ ∈ (0, δ/Sc). Applying a similar expansion for

O(β̂⋆ + δ/S⋆;λ+ δ) and noting that O(β̂c;λ) = O(β̂⋆;λ) we get

O(β̂⋆ +
δ

S⋆

;λ+ δ)−O(β̂c +
δ

Sc

;λ+ δ) = δβ̂⋆ −
δ2

S⋆

+
2δ2

S2
⋆

S̃⋆ − δβ̂c +
δ2

Sc

−
2δ2

S2
c

S̃c

= δ(β̂⋆ − β̂c) + δ2

[

1

Sc

−
1

S⋆

+
2S̃⋆

S2
⋆

−
2S̃c

S2
c

]

.

(S1)

Since ρ is quadratic around 0 and bounded, and because less than bn observations have

xi = 0, Sc, S⋆, S̃c, S̃⋆ are all bounded and Sc, S⋆ are greater than 0 for |δ| small enough.

Therefore, 0 ≤
∣

∣

∣

1
Sc

− 1
S⋆

+ 2S̃⋆

S2
⋆

− 2S̃c

S2
c

∣

∣

∣
< ∞. In turn, for |δ| small enough, (S1) is strictly

greater than 0 for positive δ and strictly less than 0 for negative δ.



S1.1.1 Example scenario

Here we consider a simple case where the conditions required for Proposition 1 hold with

high probability. Consider a bounded robust loss function ρ such that ρ(x) = ρ∞ for all

|x| > c1 and ρ is quadratic for |x| ≤ c1. Examples of such loss functions are Hampel’s

loss (Hampel et al. 1986) or the GGW and LQQ loss functions (Koller and Stahel 2011)).

Other loss functions which are at least approximately quadratic in an open neighborhood

of 0 would have similar behavior.

When we have n independent realizations from the simple model

yi =



















xiβc + γc,i i ∈ C

xiβ⋆ + γ⋆,i i /∈ C ,

where βc > 0, β⋆ − βc large enough (see below), xi i.i.d. N(0, 1), γc,i and γ⋆,i i.i.d. N(0, σ2
c )

and N(0, σ2
⋆), respectively, and C ⊂ {1, . . . , n} such that |C | = bn < n/2. For simplicity we

assume that bn and hence (1−b)n are integer. In this setting we can choose the parameters

such that the conditions on β̂c and β̂⋆ for Proposition 1 are satisfied with arbitrarily high

probability.

In the following we will consider a “bad” minimum β̂c ∈ Bc = [βc −
λn

(bn−2)
− δ, βc −

λn
(bn−2)

+ δ] and a “good” minimum β̂⋆ ∈ B⋆ = [β⋆ −
λn

(n(1−b)−2)
− δ, β⋆ −

λn
(n(1−b)−2)

+ δ].

We assume that βc and β⋆ are far enough apart such that the objective function O(β̂c;λ)

depends only on observations i ∈ C and O(β̂⋆;λ) depends only on observations i /∈ C with

probability at least 1−κ. In other words, the residuals for observations in C are within the

quadratic part of the loss function for any β̂c and in the bounded region for any β̂⋆, and

vice versa for observations not in C.



Proof. Since we assume that the robust loss function ρ is bounded, we need to show that

for all β̂c ∈ Bc all residuals for observations in ⌋ are less than c2 in absolute value with high

probability. Writing rc,i = yi − β̂cxi we have that rc,i = γc,i +
λn

(bn−2)
xi + δc for all i ∈ C and

hence

P {|rc,i| < c2} = P

{

|γci +
λn

(bn− 2)
xi + δc| < c2

}

= 1− 2Φ



−
c2

√

σ2
c +

λ2n2

(bn−2)2
+ δ2c





= pc,C > 0.

Similarly, for i /∈ C,

P {|rc,i| > c1} = P

{

|γci + (β⋆ − βc)xi +
λn

(bn− 2)
xi + δc| > c1

}

= 2Φ









−
c1

√

(

σ2
c +

λ2n2

(bn−2)2
+ δ2c

)

+ (β⋆ − βc)2









= pc,Cc ≫ 1− pc,C.

The probability pc,Cc can be made arbitrarily large by moving βc and β⋆ arbitrarily far

apart. Since ri are i.i.d., P {∀i ∈ C : |rc,i| ≤ c2 ∧ ∀i /∈ C : |rc,i| > c1} = pbnc,Cp
(1−b)n
c,Cc ≫ 0.

The same calculations can be done for β̂⋆ ∈ B⋆, and hence the objective function value

at β̂⋆ and β̂c do not depend on the same observations with arbitrarily high probability.

Conditioned on the partitioning of the observations from above, the objective function

has at least one minimum in each of Bc and B⋆ with probability at least 1− κ, i.e.,

P

{

∃(β̂c, β̂⋆) ∈ Bc ⊗ B⋆ : O
′(β̂c;λ) = O′(β̂⋆;λ) = 0

}

> 1− κ. (S2)



Proof. Consider β̂c = βc −
λn

(bn−2)
+ ∆. For β̂c to be a minimum, the derivative of the

penalized loss must be 0. As we assume that β̂c > 0, this is equivalent to:

nλ =
∑

i∈C
ψ

(

yi − βcxi −
λn

(bn− 2)
xi +∆xi

)

xi. (S3)

Since ρ is quadratic at 0 ψ is linear and hence, for σ2
c and λ small enough, we can

re-write (S3) as

nλ =
∑

i∈C
γixi +

λn

(bn− 2)

∑

i∈C
x2i +∆

∑

i∈C
x2i

⇔ ∆ =
nλ(−1 + 1

(bn−2)

∑

i∈C x
2
i ) +

∑

i∈C γixi
∑

i∈C x
2
i

.

Therefore, E[∆] = 0 and Var[∆] ≤ 1
(bn−2)

[

σ2
c +

2λ2n2

(bn−4)(bn−2)

]

. Similar calculations can

be carried out for β̂⋆. For any given ϵ, κ > 0 we can therefore find suitable σ2
c , σ

2
⋆ and n to

satisfy (S2).

Furthermore, there exists a sequence λn such that the objective function values at β̂c

and β̂⋆ are within an ϵ neighborhood with arbitrarily high probability 1− κ, i.e.,

lim
n→∞

P

{

O(β̂⋆;λn) = O(β̂c;λn)
}

> 1− κ. (S4)

Proof. Define D = O(β̂⋆;λn) − O(β̂c;λn). Since the loss function is quadratic in a neigh-

borhood around 0, we can write D as



D = ρ∞(b− (1− b))+

1

n

(

∑

i/∈C

γ2i −
∑

i∈C
γ2i

)

+

λ2n

(

n

(n(1− b)− 2)2

∑

i/∈C

x2i −
n

(nb− 2)2

∑

i∈C
x2i

)

+

2λn

(

1

(n(1− b)− 2)

∑

i/∈C

γixi −
1

(nb− 2)

∑

i∈C
γixi

)

+

2λn

(

∆⋆

(n(1− b)− 2)

∑

i/∈C

xi −
∆c

(nb− 2)

∑

i∈C
xi

)

+

1

n

(

∆2
⋆

∑

i/∈C

x2 −∆2
c

∑

i∈C
x2i

)

+

2

n

(

∆⋆

∑

i/∈C

γixi −∆c

∑

i∈C
γixi

)

+

λ2n

(

−
n

n(1− b)− 2
+

n

nb− 2

)

λn (β⋆ − βc +∆⋆ −∆c) .



Setting the expectation of D to 0 yields

0 = E[D] = ρ∞(2b− 1)+

(1− b)σ2
⋆ − bσ2

c+

λ2n

(

n2(1− b)

(n(1− b)− 2)2
−

n2b

(nb− 2)2

)

+

∆2
⋆(1− b)−∆2

cσ
2
c b+

λ2n

(

−
n

(n(1− b)− 2)
+

n

(nb− 2)

)

λn (β⋆ − βc +∆⋆ −∆c)

=λ2n

[

n2(1− b)

(n(1− b)− 2)2
−

n

(n(1− b)− 2)
−

n2b

(nb− 2)2
+

n

(nb− 2)

]

+

λn (β⋆ − βc +∆⋆ −∆c)+

ρ∞(2b− 1) + (1− b)σ2
⋆ − bσ2

c .

Setting An =
[

n2(1−b)
(n(1−b)−2)2

− n
(n(1−b)−2)

− n2b
(nb−2)2

+ n
(nb−2)

]

, B = β⋆ − βc + ∆⋆ − ∆c and

C = ρ(∞)(b− (1− b)) + (1− b)σ2
⋆ − bσ2

c , we can see that An < 0 with limn→∞An = 0 and

B > 0. Further, we can choose σc and σ⋆ such that C < 0. Now if β⋆−βc = o((σ2
⋆ −σ2

c )/n)

then B2 − 4AC > 0 and hence there exists a λn > 0 such that E[D] = 0. Specifically,

lim
n→∞

λn =
bσ2

c − (1− b)σ2
⋆ + ρ∞(1− 2b)

β⋆ − βc +∆⋆ −∆c

.

Moreover, Var[D] =
√
2b
n

(σ2
c + C2

cn) +
√
2(1−b)
n

(σ2
⋆ + C2

⋆n) with Ccn = λnn
(nb−2)

+ ∆c and

C⋆n = λnn
(n(1−b)−2)

+∆⋆ which goes to 0 as n goes to infinity. Therefore, limn→∞ P {|D| > ϵ} =

0.
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Figure S1: Demonstration of a non-smooth regularization path for a penalized M-estimator of regression
in a simulation following the example scenario from Section S1.1.1 (with σc = 0.01, σ⋆ = 0.1,
βc = 0.5, β⋆ = 100, b = 0.3 and n = 100). We show the location of local minima when using the
LQQ ρ function (left panel) and Tukey’s bisquare ρ function (right panel). Gray dots represent local
minima and blue dots indicate the global minimum. The orange lines depict the expected value of
the minima at β̂c = βc −

λn

nb−2 and β̂⋆ = β⋆ −
λn

n(1−b)−2 .

S2 Additional Empirical Studies

S2.1 Gene Pathway Recovery Analysis

This application is a gene pathway recovery analysis using data from Pfister et al. (2021)

and the PENSE estimator (Kepplinger 2023). The data set contains preprocessed protein

expression levels from 340 genes from seven different pathways for 315 subjects. Mimicking

the original analysis (Pfister et al. 2021) we define as response the average expression of

proteins on the Cholesterol Biosynthesis pathway. We further add Laplace-distributed

noise to achieve a signal-to-noise ratio (SNR) of 1. We split the data set into a training

data set comprising 165 randomly selected subjects and a test data set with the remaining

150 subjects. We then contaminate the training data set by replacing the response for 25

subjects (15%) with the average expression of proteins on the Ribosome pathway, again

adding Laplace noise with a SNR of 1. The PENSE estimator is tuned to a breakdown



point of 25% and uses an EN penalty with α = 0.5. For RIS-CV, we retain up to 50

local solutions. For both N-CV and RIS-CV, we utilize only the solutions on the complete

training data as starting points for the CV folds, demonstrating that this computational

shortcut can still yield reliable results.

In contrast to the CAV application, here we can evaluate the out-of-sample prediction

performance on an independent test set. In Figure S2 we see both the CV estimated

prediction errors and the out-of-sample MAPE evaluated on the independent test set. In

this application, N-CV is not as badly affected by local optima as in the previous example,

but there is nevertheless a noticeable change in slope around λ-index= 13 for N-CV. RIS-

CV, on the other hand, yields a somewhat smoother CV curve and the 1-SE rule yields a

minimally better prediction accuracy (0.196 vs. 0.194).

The regularization path in Figure S3 also shows the advantages of selecting a solution

other than the “global” minimum in RIS-CV. N-CV exhibits a substantial discontinuity at

λ-index= 48.
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Figure S2: CV curves from ten replications of 10-fold CV in the gene pathway recovery analysis for the
non-robust LS-EN estimator (left, magenta), the PENSE estimator with N-CV (middle, green) and
the PENSE estimator with RIS-CV (right, blue). The gray curves show the out-of-sample (OOS)
mean absolute error for the selected solutions.
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S2.2 Determinants of Plasma Beta-Carotene Levels

In this application, we want to uncover determinants of plasma beta-carotene levels from

data publicly available at http://lib.stat.cmu.edu/datasets/Plasma Retinol (Nierenberg et

al. 1989), using the PENSE estimator. We dummy-code the data and build a model with all

available covariates and their interaction with the subject’s sex (binary male/female). This

leads to a total of 22 predictors for 315 subjects (42 male, 273 female). We randomly select

a training data set of size N = 100, stratified among male/female such that 30 subjects in

the training data are male and 70 are female. We deliberately oversample male subjects to

the training data to ensure sufficient variation in all sex-dependent interaction terms.

Figure S4 indicates that both 10-fold RIS-CV and N-CV lead to smooth CV curves.

However, the penalization level/solution selected by the 1-SE rule with the RIS-CV curve

leads to a smaller out-of-sample (OOS) error than the solution selected with N-CV. More-

over, it is obvious that the non-robust least-squares EN estimator achieves substantially

worse prediction accuracy than the robust estimator. In this application, RIS-CV always

http://lib.stat.cmu.edu/datasets/Plasma_Retinol
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Figure S4: CV curves from ten replications of 10-fold CV for the analysis of plasma beta-carotene levels
for the non-robust LS-EN estimator (left, magenta), the PENSE estimator with N-CV (middle,
green) and the PENSE estimator with RIS-CV (right, blue). The gray curves show the out-of-
sample (OOS) mean absolute error for the selected solutions.

selects the first solution and hence the regularization path is identical between N-CV and

RIS-CV.

S3 Additional Details About the Simulation Study

S3.1 Details About the Simulation Settings

The contamination data generating process is defined as follows. For each contamination

signal we first randomly select ⌊log2(p)⌋ covariates (excluding the first s covariates), denoted

by J ∗ ⊂ {s + 1, . . . , p}. Then, for three different values of u1 = −1.5, u2 = −1, u3 = −0.5

and the respective contamination indices C1 = {1, . . . , 0.1n}, C2 = {0.1n + 1, . . . , 0.2n},

C3 = {0.2n+ 1, . . . , 0.3n}, in observations i ∈ Ck the covariates and responses are replaced

according to the following DGP:

x∗ij =



















xij j /∈ J ∗

klxij j ∈ J ∗

, β∗
0j =



















0 j /∈ J ∗

kv j ∈ J ∗

, y∗i = x∗
i
⊺
β∗

0 + ε∗i .



The constant kl is chosen such that x∗
i is at least twice as far from the center (in terms

of the Mahalanobis distance) than all the other non-contaminated observations. The error

term ε∗i is Gaussian with variance such that β∗
0 achieves a SNR of 10.

S3.2 Additional Simulation Results

Here we present additional results from the simulation study.

Figure S5 shows the relative prediction error achieved by N-CV using the two-step

approximation for the CV fits as proposed in Khan et al. (2010). While this strategy leads

to some improvement over N-CV, the gains are most often very small.

Figures S6 and S7 show the CV curves and the corresponding true prediction errors for

simulation runs from two different settings. The number in each box indicates the index

of the chosen solution (1 being the global minimum). In the setting with Laplace errors,

both RIS-CV and N-CV lead to CV curves with the typical “U” shape, but it is clearly

advantageous to consider more than just the global minimum as evident from the true

prediction errors. The solutions selected by RIS-CV (at the minimum and using the 1-SE

rule) are not the global minima at the respective penalization level. For the Gaussian case,

N-CV fails to capture the actual shape of the prediction error, and the global minimum has

a clear discontinuity between λ = 1 to λ = 3. RIS-CV, on the other hand, again matches

the “U” shape of the true prediction error and, except at a single penalization level, identify

the local minima that lead to a smoother prediction error curve.

We further compute measures of smoothness of the CV curves and regularization paths

across the 1,800 simulation runs, namely (1) the maximum absolute difference between

two consecutive penalization levels and (2) the sum of the squared second-order differences
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Figure S5: Prediction accuracy of the PENSE solution selected by N-CV with the two-step approximation
relative to the prediction accuracy of the PENSE solution selected by N-CV re-computing and fully
iterating the ENPY starting points. Prediction accuracy is measured by the RMSPE for normal
errors and by the MAPE for other error distributions, computed on an independent test set of size
10,000. The star in each boxplot denotes the arithmetic mean.

(i.e., the “wiggliness” of the curve), i.e.,

S1 = max
k

∣

∣

∣Ê(λk)− Ê(λk−1)
∣

∣

∣
, (S5)

S2 =
∑

k

(

Ê(λk−1)− 2Ê(λk)− Ê(λk+1)
)2

. (S6)

In Figure S8, we plot these summaries across all settings from the simulation study in

Section 5in the revised manuscript. In the top panel, we can see that the RIS-CV curve

is overall smoother than the N-CV curve according to these measures. We want to note,

however, that N-CV sometimes leads to fairly flat CV curves, which are smooth but not

very informative as to a good selection of the penalization level. In the bottom panel,

there does not seem to be a large difference in the smoothness of the L1 norm of the

coefficients along the regularization path. This suggests that in the simulations, the local

minima selected by RIS-CV are similar to the global minima. Combining this insight with

the prediction accuracies in Figure 4it seems that RIS-CV is able to better quantify the

prediction error of these minima by matching them with a more appropriate surrogate CV

solution.
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Figure S6: Examples of CV curves estimated by RIS-CV (left) and N-CV (right) for a setting with
Laplace errors, p = 50 and n = 100. The numbers in the boxes denote the index of the selected
solution (1 is the global minimum). The blue solution indicates the minimum of the CV curve,
whereas the orange solution is chosen by the 1-SE rule (3).

S3.3 Using only shared starts

We therefore compare the selection and achieved prediction accuracy of RIS-CV, where

new starting points are computed on each CV fold, and RIS-CV (warm) where we use only

the solutions from the fit to the complete training data, in the same simulation study as

presented in the main manuscript (Section 5).

Figure S9 summarizes the differences across all settings in the simulation study. As

expected, the computations with RIS-CV (cold) take substantially longer than with RIS-

CV (warm), on average more than 20 times longer (Figure S9a). However, we also observe

in Figure S9b that RIS-CV leads to slightly better model selection. This better prediction

accuracy may be due to RIS-CV sometimes choosing larger penalization levels and hence
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Figure S7: Examples of CV curves estimated by RIS-CV (left) and N-CV (right) for a setting with
Gaussian errors, p = 50 and n = 200. The numbers in the boxes denote the index of the selected
solution (1 is the global minimum). The blue solution indicates the minimum of the CV curve,
whereas the orange solution is chosen by the 1-SE rule (3).

possibly reducing overfitting in these cases (Figure S9d). While the matched CV surrogates

are overall more similar to the minima on the complete training data with RIS-CV (warm)

(Figure S9c), the matched solutions are much more similar with RIS-CV at the “important”

penalization levels (i.e., where the estimated prediction error attains its minimum and where

it is within 1 standard error of that minimum). Therefore, the advantages of RIS-CV are

possibly due to finding “better” surrogates by considering a larger number of starting

points, but also because RIS-CV (warm) could induce some bias towards overfitting.
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Figure S9: Comparisons of RIS-CV against RIS-CV (warm) across all settings in the simulation study.
Boxplot (a) depicts the increase in computation time for RIS-CV relative to RIS-CV (warm), while
(b) shows the overall improvement in prediction error attained by RIS-CV over RIS-CV (warm).
The boxplots in (c) show the difference in the similarities of the matched minima: the difference in
the average similarity between the chosen solution (at the minimum prediction error and using the
1-SE rule) and the average differences across all similarities for all minima on the complete training
data. Sub-figure (d) shows the difference in the selected penalization level at the level with smallest
estimated prediction error and the prediction error with 1 standard deviation of the minimum.
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