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In large-scale quantitative proteomic studies, scientists measure the
abundance of thousands of proteins from the human proteome in search of
novel biomarkers for a given disease. Penalized regression estimators can be
used to identify potential biomarkers among a large set of molecular features
measured. Yet, the performance and statistical properties of these estimators
depend on the loss and penalty functions used to define them. Motivated by a
real plasma proteomic biomarkers study, we propose a new class of penalized
robust estimators based on the elastic net penalty, which can be tuned to keep
groups of correlated variables together in the selected model and maintain ro-
bustness against possible outliers. We also propose an efficient algorithm to
compute our robust penalized estimators and derive a data-driven method to
select the penalty term. Our robust penalized estimators have very good ro-
bustness properties and are also consistent under certain regularity conditions.
Numerical results show that our robust estimators compare favorably to other
robust penalized estimators. Using our proposed methodology for the analy-
sis of the proteomics data, we identify new potentially relevant biomarkers of
cardiac allograft vasculopathy that are not found with nonrobust alternatives.
The selected model is validated in a new set of 52 test samples and achieves
an area under the receiver operating characteristic (AUC) of 0.85.

1. Introduction. Biomarkers are indicators of pathogenic processes or re-
sponses to therapies. Recent advances in various -omics technologies allow for
the simultaneous quantification of thousands of molecules (e.g., genes and pro-
teins) revolutionizing the way that scientists search for molecular biomarkers. For
example, mass spectrometry shotgun proteomic techniques can be used to mea-
sure the abundance of hundreds of proteins that have not been previously hypothe-
sized to be associated with a certain disease. The innovation of technical resources
available for -omic biomarker studies is well recognized, and the development of
statistical and computational methods to analyze the resulting datasets is important
for validation and clinical implementation of biomarker discoveries.
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In this paper, we use linear regression to model the association between hun-
dreds of plasma protein levels and the obstruction of the left anterior descending
artery in heart transplant patients. The goal is to identify proteomic biomarkers
of cardiac allograft vasculopathy (CAV) which is a major complication suffered
by 50% of cardiac transplant recipients beyond the first year after transplantation.
Identifying these plasma proteomic biomarkers can result in the development of
minimally invasive and clinically useful blood tests to diagnose CAV. Although
hundreds of proteins were measured and analyzed in these patients, only a few of
them are expected to be associated with artery obstruction, resulting in a sparse
regression model.

Penalized regression estimators have been proposed to identify a relatively
small subset of explanatory variables among a large number of available covariates
(even larger than the number of observations) to obtain good prediction (Tibshirani
(1996), Zou and Hastie (2005)). However, most of these estimators use the squared
error loss function and are thus extremely sensitive to outliers. Since -omics studies
usually contain outlying data points associated, for example, with technical prob-
lems in sample preparation or patients with rare molecular profiles, robust penal-
ized estimators are needed to effectively interrogate the rich information contained
in the data.

Although many robust regression methods have been proposed in the literature
(see Maronna, Martin and Yohai (2006) for a review), the development of pe-
nalized robust estimation methods is still in its early stages. Most of the existing
work is focused on the penalization of convex M-estimators (Fan, Li and Wang
(2017), Fan and Peng (2004)), which are not resistant to high leverage outliers
commonly observed in large datasets. Khan, Van Aelst and Zamar (2007) pro-
posed a robust version of the Least Angle Regression method (Efron et al. (2004))
replacing sample correlations with robust counterparts. Since this method does
not solve any optimization problem, it is difficult to understand its robustness and
asymptotic properties. More recently, Alfons, Croux and Gelper (2013) proposed
SparseLTS (Alfons, Croux and Gelper (2013)), an L1-regularized version of the
Least Trimmed Squares regression estimator (Rousseeuw (1984)), which can only
be tuned to be either highly robust or highly efficient under the central model.

To obtain simultaneous robustness and efficiency in a regularized context,
Maronna (2011) proposed an MM-estimator with a ridge penalty. Although the
proposed MM-Ridge regression estimator has good prediction performance, it
does not produce sparse solutions and hence cannot be used for variable selection.
To address this issue, Smucler and Yohai (2017) recently proposed a penalized
MM-LASSO estimator. However, as shown for the classical LASSO (Tibshirani
(2013)), if the design matrix is in general position, the MM-LASSO estimator
cannot select more variables than the number of available observations. In addi-
tion, if the data contain groups of highly correlated explanatory variables, LASSO
tends to randomly select only one variable from each group ignoring the relevance
of the others.
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In -omics datasets the number of measured features is usually much larger than
the number of samples, and genes belonging to the same pathway or biological
process form groups of correlated variables. Thus, the limitations of Ridge and
LASSO methods can jeopardize the discovery of clinically useful biomarkers. In
this study, we propose to combine robust loss functions with the elastic net penalty
(Zou and Hastie (2005)), a linear combination between the L2-penalty of Ridge
and the L1-penalty of LASSO. The resulting penalized robust regression estima-
tors are not limited by the number of available samples and can select groups of
correlated proteins while being protected against possible outliers in the dataset.

First, we derive the Penalized Elastic Net S-Estimator (PENSE) by penalizing a
robust (squared) scale function of the residuals, instead of the usual sum of squared
residuals. Next, to improve the efficiency of PENSE while maintaining its robust-
ness, we use it to initialize an elastic net penalized M-regression estimator. We call
this refined estimator PENSEM. We use our robust estimators to identify poten-
tially relevant proteomic biomarkers of cardiac allograft vasculopathy from a set
of n = 37 plasma samples from heart transplant patients, collected at one year after
transplantation.

In Sections 2 and 3 we present our elastic net regularized robust estimators,
along with efficient algorithms to compute them. In Section 4 we show that our es-
timators are robust, in the sense of not being unduly influenced by a small propor-
tion of potentially atypical patients. Before we discuss our findings in the cardiac
allograft vasculopathy study in Section 6, we explore the properties of our estima-
tor with a simulation study, reported in Section 5. Final remarks and conclusions
can be found in Section 7. The Supplementary Material contains more technical
details and all proofs (Cohen Freue et al. (2019)).

2. PENSE: A new robust penalized regression estimator. The relationship
between molecular features and a disease of interest can be modelled by a linear
regression model,

(1) yi = μ + xᵀi β + εi, i = 1, . . . , n,

where μ ∈ R and β ∈ R
p are the regression coefficients. In biomarkers dis-

covery studies the response variable, yi ∈ R, measures the status of a disease
(e.g., stenosis of a coronary artery) for the ith patient, and the set of covariates,
xi = (xi1, . . . , xip)ᵀ ∈ R

p , are the measurements of all features (e.g., protein lev-
els). In particular, in the proteomic case study analyzed in this paper, the number
of patients (n) is 37, and the number of measured proteins (p) is 81. We assume
that the response is centered and the covariates are standardized. Given the po-
tential presence of outliers in our dataset, we center the data using column-wise
medians and standardize each variable to have a median absolute deviation (from
the median) equal to 1.
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Although thousands of molecular features may be measured and analyzed in
-omics studies, usually only a few are expected to be associated with a given dis-
ease. Thus, we focus on regularized regression estimators to select relevant vari-
ables. Since proteomics biomarkers usually function in groups, here we consider
the elastic net penalty that tends to keep groups of correlated variables together as
they enter or leave the model. Furthermore, -omics studies usually contain outly-
ing observations, typically arising from technical issues in the sample preparation
steps or the presence of patients with unusual molecular profiles. To protect the re-
sulting estimator against atypical observations, instead of penalizing the classical
squared error loss function, we penalize the square of a robust residual scale esti-
mator previously used to define the S-estimators (Rousseeuw and Yohai (1984)).

Our penalized elastic net S-estimator, PENSE, is defined as the minimizer
(μ̂PS, β̂PS) of

(2) LPS(μ,β) = σ 2(μ,β) + λS

(
1

2
(1 − α)‖β‖2

2 + α‖β‖1

)
,

where σ(μ,β) is a robust residual scale estimator, λS ≥ 0 is the penalty level
and α ∈ [0,1] determines the desired combination of the L1- and L2-penalties. In
particular, if α = 1, the estimator becomes a LASSO S-estimator, and if α = 0, it
becomes a Ridge S-estimator. The parameters λ and α determine the size of the
identified model and can be chosen using different criteria. In our application, we
generate a moderate level of sparsity, aiming to select relevant proteins while at
the same time controlling the number of false biomarkers identified from the data.

In what follows we use a robust M-estimate for σ(μ,β), given implicitly by the
solution of

(3)
1

n

n∑
i=1

ρ

(
yi − μ − xᵀi β

σ (μ,β)

)
= δ,

for an even and bounded function ρ and tuning constant δ ∈ (0,1). Both ρ and
δ need to be chosen jointly to obtain robust and consistent estimators. For more
details we refer to Maronna, Martin and Yohai (2006).

Given a fixed penalty parameter λS , minimizing the objective function (2) is
challenging due to its nonconvexity and the lack of differentiability of the elastic
net penalty at β = 0. However, since the unpenalized S loss is continuously dif-
ferentiable and the elastic net penalty is locally Lipschitz, the penalized S loss (2)
is locally Lipschitz. Thus, following Clarke (1990) we can derive its generalized
gradient,

(4) ∇(μ,β)LPS(μ,β) = 2

⎡
⎣−1

n

n∑
i=1

ri(μ,β)wi(μ,β)

(
1
xi

)
+ λS

2

(
0

∇βPα(β)

)⎤
⎦ ,

where Pα(β) = 1
2(1 − α)‖β‖2

2 + α‖β‖1 is the elastic net penalty, ri(μ,β) =
yi − μ − xᵀi β are the residuals and the weights wi(μ,β) are proportional to
ρ′(r̃i(μ,β))/r̃i(μ,β) where r̃i (μ,β) = ri(μ,β)/σ(μ,β).
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To find a root of (4) above, note that it coincides with the subgradient of the
classical weighted elastic net loss, except that the weights depend on the unknown
coefficients (μ,β). This suggests the following iterative procedure. Given an ini-
tial estimate (μinit, β init) and its corresponding M-scale estimate σ(μinit, β init),
obtain an improved set of parameter estimates by computing a weighted elastic
net with weights wi(μ

init, β init) as above. Next, update the weights and iterate. We
refer to this algorithm as the iteratively reweighted elastic net (IRWEN) (see the
Supplementary Material (Cohen Freue et al. (2019)) for more details).

2.1. Initial estimator. Ideally, we want to find the global minimum of the ob-
jective function (2) that defines PENSE. However, because of the lack of convexity
of this function, for the above iterations to converge to a good local optimum it is
necessary to find a good starting point for IRWEN.

Initial estimators for the nonpenalized S-estimator have been extensively stud-
ied in the literature (e.g., Salibian-Barrera and Yohai (2006), Koller and Stahel
(2017)). A commonly used strategy is to construct data-driven random starts by
fitting the regression model on randomly chosen subsets of the data. The idea is
that subsets without outliers will provide good starting points. To maximize the
chance of obtaining a clean starting point, subsets are taken with as few points as
possible. However, when the number of variables exceeds the sample size (e.g.,
p = 81 proteins and n = 37 patients in our case study), it is not clear how to define
the size of the random subsets.

Alfons, Croux and Gelper (2013) proposed to compute a LASSO estimator on
random subsets of size 3 to initialize the algorithm for SparseLTS. However, the
size of the subset limits the number of variables that LASSO can select for the
initial estimator. In our application, using an initial estimator based on only three
proteins may result in an undesirably sparse final model with the potential loss of
relevant biomarkers.

Instead, we adapt the approaches of Peña and Yohai (1999) and Maronna (2011)
and construct clean subsets of our proteomics data by removing outlying observa-
tions. These potential outliers are flagged using the principal sensitivity compo-
nents (PSCs), which measure the effect of each data point on the estimated model.
The classical EN estimator is then computed on the cleaned subset and used as
candidate initial estimators for IRWEN. More details can be found in the Supple-
mentary Material (Cohen Freue et al. (2019)).

The optimal level of penalization for PENSE, λ∗
S in (2), is generally unknown

in advance and is chosen from a grid of K possible values based on the prediction
performance of the penalized estimator. In our problem, this parameter limits the
number of potential biomarkers that we migrate to the validation stage. Since the
number of selected variables (proteins in our case) can vary greatly among differ-
ent levels of penalization, fine grids with large K are usually preferred. In our case,
we examine our estimator at K = 100 penalty values to evaluate the contribution
of small sets of proteins gradually incorporated in (or removed from) the selected
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model. To ease the burden of computing an initial estimator (or several candidates)
for every λS in the grid, we use “warm” starts in which a local optimum of (2) at a
penalty value in the grid can be used to initiate the iterative algorithm at adjacent
penalty levels.

This strategy is commonly used to compute other penalized estimators
(Friedman, Hastie and Tibshirani (2010), Tomioka, Suzuki and Sugiyama (2011)).
Ideally, starting the “warm” algorithm with a very large penalty value that shrinks
all regression coefficients to zero saves the computation of any other initial esti-
mator. However, since the objective function (2) is not convex, this strategy is no
longer guaranteed to find good solutions along the grid. Thus, we combine “warm”
initial estimates with “cold” initial estimates obtained from EN PSCs to initiate
IRWEN, harnessing the benefits of both strategies. We refer to the Supplementary
Material for more details (Cohen Freue et al. (2019)).

3. PENSEM: A refined estimator. Many applications where regularized es-
timators are used have relatively few observations. In particular, proteomics data
sets tend to be relatively small due to the costs associated with their collection.
Hence, reducing the sampling variability of the regression estimators may help
lower the threshold over which protein effects can be detected in models like (1).

Following Yohai (1987), we refine PENSE to obtain a penalized M-estimator,
PENSEM, with higher efficiency (lower variance) and same robustness strength.
PENSEM is defined as the minimizer (μ̂PM, β̂PM) of the penalized loss

(5) LPM(μ,β) = 1

n

n∑
i=1

ρ2

(
yi − μ − xᵀi β

σ̂0

)
+ λM

(
1

2
(1 − α)‖β‖2

2 + α‖β‖1

)
,

where the residual scale estimate σ̂0 is fixed and ρ2 is an even and bounded func-
tion. As with PENSE, we can use an IRWEN algorithm to find local minima of
(5), initialized using the PENSE estimate (μ̂PS, β̂PS). However, the estimation of
the initial residual scale, σ̂0, requires special attention.

For datasets with few explanatory variables (i.e, small p relative to the sam-
ple size n), the scale based on the residuals from an S-estimator has been used
to compute MM-estimators. However, Maronna and Yohai (2010) have noted that
this scale estimator usually underestimates the true error scale if the ratio p/n is
high. This problem becomes even more serious in applications like ours where the
sample size (n = 37) is smaller than the number of explanatory variables (p = 81).
Following this observation, Maronna (2011) adjusts the residual scale estimator of
the Ridge-S if its effective degrees of freedom is larger than 10% of the sample
size. Based on the results of our numerical studies and considering the sparsity of
our model, we also compute PENSEM using an adjusted residual scale estimator
σ̂0 = qσ̂ (μPS, βPS). Further details on the correction factor q and other adjust-
ments suggested in the literature are given in the Supplementary Material (Cohen
Freue et al. (2019)).
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Finally, we need to determine the level of penalization of PENSEM which con-
trols the number of variables selected in the final model. Although both PENSE
and PENSEM are defined using the same penalty function, it is impossible to de-
termine what values of λS and λM give the same level of penalization due to the
vastly different scale and shape of the loss functions. Thus, the penalty parameter
λ∗

M for PENSEM is also chosen from a grid of candidate values, which might be
different from the grid used to determine λ∗

S . Irrespective of the level of penaliza-
tion induced by each λM in the grid, the scale estimate σ̂0 is always based on the
PENSE estimate obtained with the optimal penalty level λ∗

S since this is the best
estimate of the M-scale of the true residuals available. Similarly, for each λM in
the grid, we start the numerical optimization of the penalized M-loss function (5)
at the optimal PENSE estimate (μ̂PS, β̂PS). Finding a local optimum of the non-
convex PENSEM objective function that is close to the optimal PENSE estimate
is in line with our goal of refining the optimal PENSE estimate.

4. Properties. In this Section, we study the robustness and statistical proper-
ties of the proposed estimators.

4.1. Robustness. Technical challenges with sample preparation and patients
with atypical molecular profiles mean that the potential presence of outliers is an
important concern when working with proteomics datasets. One measure of ro-
bustness against outliers is the (finite-sample) breakdown point (Donoho and Hu-
ber (1983)), which is the largest proportion of samples in the data set that could
be contaminated arbitrarily and still result in a bounded estimator. The larger this
proportion, the “safer” the estimator is, in the sense of not being completely deter-
mined by a small number of atypical patients in the training set.

One goal in the cardiac allograft vasculopathy study is the detection of atypical
samples in the data. Outliers in regression models can be flagged by considering
the residuals from the fit. This approach is expected to work well when the esti-
mated parameters are not affected by the outliers; one is trying to detect, so high
breakdown point estimators also provide reliable outlier detection methods. We
illustrate this successfully in Section 6 below.

The formal definition of the finite-sample breakdown point of an estimator is
as follows. Let Z = (z1, . . . , zn)

ᵀ be a fixed dataset, where zi = (yi,xᵀi )
ᵀ. The

replacement finite-sample breakdown point (FBP), ε∗(θ̂;Z), of an estimator θ̂ is
defined as

(6) ε∗(θ̂;Z) = max
{
m

n
: sup

Zm∈Zm

∥∥θ̂ (Zm)
∥∥ < ∞

}
,

where the set Zm contains all possible datasets Zm with 0 < m < n of the original
n observations replaced by arbitrary values (Donoho and Huber (1983)). In the
proteomic case study analyzed in this paper, n = 37 corresponds to the number of
independent plasma samples from cardiac transplant recipients.
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Since penalized optimization problems are equivalent to constrained ones, one
may conjecture that regularized estimators are “automatically” robust, in the sense
that they are necessarily constrained and thus bounded. However, this is generally
not true. For example, Alfons, Croux and Gelper (2013) show that the breakdown
point of the LASSO is 1/n. In general, the bound on the equivalent constrained
optimization problem depends on the sample and thus may grow to infinity when
outliers are present.

To see this in the case of the LASSO estimator, let β∗ be a minimizer of the pe-
nalized sum of squared residuals objective function,

∑n
i=1(yi − xᵀi β)2 + λ0‖β‖1,

for a fixed λ0 > 0 (to simplify the presentation we assume that the data are
standardized so that no intercept is present in the model). Following the results
in Osborne, Presnell and Turlach (2000), we have ‖β∗‖1 = C0 = (r∗)ᵀXβ∗/λ0,
where r∗ = (r∗

1 , . . . , r∗
n)ᵀ is the vector of residuals for β∗. If β∗ is different from the

usual least squares estimator, it follows that β∗ also minimizes
∑n

i=1(yi − xᵀi β)2

subject to ‖β‖1 ≤ C0. Since the bound C0 depends on the sample, it can become
arbitrarily large when outliers are present in the data.

The following theorem shows that the PENSE estimator retains the high-
breakdown point of the parent unpenalized S-estimator. More specifically, the
breakdown point of PENSE is at least min(δ,1 − δ), where δ is the tuning con-
stant in (3) defining the residual scale M-estimator. Thus, if we compute PENSE
with δ = 0.5, as long as less than half of the patients in our study are representa-
tive of the target population, our robust estimator will not be unduly affected by
potential outliers in the data.

THEOREM 1. For a dataset of size n, let m(δ) ∈ N be the largest integer
smaller than nmin(δ,1− δ), where δ is the right-hand side of (3). Then, the finite-
sample breakdown point of the PENSE estimator (μ̂PS, β̂PS) satisfies

m(δ)

n
≤ ε∗(

μ̂PS, β̂PS;Z
) ≤ δ.

A proof of the theorem is given in the Supplementary Material (Cohen Freue et
al. (2019)). Moreover, the proof in Smucler and Yohai (2017) can be used to show
that the breakdown point of PENSEM is at least as high as the breakdown point of
the initial scale estimator PENSE.

4.2. Consistency. Consistency is a desired statistical property of any estimator
that in a sense ensures better estimates of the true model parameters as more data
is collected. In addition to being robust, we prove that the coefficients estimated
by PENSE and PENSEM converge to the true values when both the number of
observations n and the number of predictors p grow to infinity (Theorem 3.2 of
the Supplementary Material in Cohen Freue et al. (2019)). Importantly, our result
does not require any moment assumptions on the distribution of the errors, and
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hence guarantees high-quality estimations with large sample sizes, even in cases
with extremely heavy-tailed error distributions. However, our proof of consistency
requires that p < n, which may not be the case for many available datasets. In
particular, in our proteomic biomarkers study the number of patients (n) is 37,
and the number of measured proteins (p) is 81. Results of an extensive simulation
study to complement the above asymptotic theory in the case n < p are discussed
in the next section.

5. Simulation studies. We report here the results of our numerical experi-
ments conducted to further study the properties of our estimators and compare
them with other robust and/or penalized estimators.

We consider data following a linear regression model of the form

(7) yi = xᵀi β0 + εi, εi ∼ N
(
0, σ 2)

,1, . . . , n,

with four different combinations of the number of observations: (n), the number
of predictors, (p), the correlation structure of the explanatory variables x and the
true regression coefficients (β0) (see Section 5.2 below).

We compare our PENSE and PENSEM estimators with the following classical
and robust sparsity-inducing estimators: the classical LASSO, the classical EN,
SparseLTS and MMLASSO. Ridge estimators are not included since they can not
be used for variable selection. Whenever possible, we also include the oracle OLS
and MM estimators, which estimate only the coefficients of the true active set
of predictors. PENSE and PENSEM are computed using Tukey’s Bisquare loss
ρc(t) = min{1,1 − (1 − (t/c)2)3}. Computer code for PENSE and PENSEM is
publicly available at https://cran.r-project.org/package=pense. For SparseLTS we
use the implementation available in the R package robustHD (Alfons (2016)).
The penalty parameter was chosen to optimize its prediction performance esti-
mated by cross-validation. For MMLASSO we use the functions available in the
authors’ github repository https://github.com/esmucler/mmlasso. The implemen-
tation of the MM-LASSO chooses the breakdown point adaptively between 25%
and 50%, depending on the estimated degrees of freedom of the initial S-Ridge
estimate. Other robust estimators are tuned to achieve a 25% breakdown point.

5.1. The penalty parameters. The level of penalization λS is chosen from a
grid of 100 logarithmically equispaced values to optimize PENSE’s prediction per-
formance estimated via 10-fold cross-validation (CV). Since the training sample
might contain contaminated observations, instead of the usual root mean squared
prediction error we use a robust τ -scale (Yohai and Zamar (1988)) estimate of the
out-of-sample prediction errors.

Similarly, we compute PENSEM on a grid of 100 logarithmically equispaced
values for λM , starting from the optimum λ∗

S . The optimal λ∗
M is again chosen by

10-fold CV minimizing the τ -scale of the prediction errors.

https://cran.r-project.org/package=pense
https://github.com/esmucler/mmlasso
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The balance between the L1- and the L2-penalties as controlled by the parame-
ter α ∈ [0,1] is fixed throughout the selection of λS and λM . In many applications
the user selects this value based on the desired level of sparsity of the resulting
model. For example, in the proteomics study analyzed in this paper, the identified
potential biomarkers were validated by an independent and more precise tech-
nology. Thus, we chose a moderate level of sparsity to control the risk of missing
promising markers and the cost of migrating irrelevant ones to the validation phase.
In other contexts, one can compute the estimators for several different values of α

and choose the value α∗ that yields the best CV prediction performance. For a
comprehensive discussion on this topic we refer to Zou and Hastie (2005).

As with the classical EN estimator (Zou and Hastie (2005)), PENSE and
PENSEM suffer from “double” penalization due to the combination of the L1-
and the L2- penalties and we correct them as β̂

√
1 + 1/2(1 − α∗)λ∗. The intercept

is also adjusted to maintain centered weighted residuals.

5.2. Simulation scenarios. To demonstrate the benefits of the EN over the L1
penalty, we include two scenarios from Zou and Hastie (2005) and Zou and Zhang
(2009). In these scenarios the correlation among the predictors with nonzero re-
gression coefficient is moderate to high. We also modify the scenario in Zou and
Hastie (2005) to a more challenging one with more active predictors than obser-
vations. Finally, we consider a very sparse scenario with no correlation among the
active predictors, which may favor L1-penalized estimators. Using the notation in
(7), the four scenarios are:

(1) Example (d) in Zou and Hastie (2005): p = 40, n = 50; σ = 15 and

β0 = (3, . . . ,3︸ ︷︷ ︸
15

,0, . . . ,0︸ ︷︷ ︸
25

)ᵀ.

The first 15 predictors are generated from a latent variable model with three
latent variables

xj = z�j/5 + δj where zl ∼ N(0,1), δj ∼ N
(
0,0.012)

,

for j = 1, . . . ,15, l = 1,2,3. The remaining 25 predictors are i.i.d. standard
Normal.

(2) Same as (1) except p = 400 � n = 50, and

β0 = (3, . . . ,3︸ ︷︷ ︸
60

,0, . . . ,0︸ ︷︷ ︸
340

)ᵀ.

The latent variable model is based on three factors, and each factor is associ-
ated with 20 predictors, that is,

xj = z�j/20 + δj where zl ∼ N(0,1) and δj ∼ N
(
0,0.012)

,

for j = 1, . . . ,60, l = 1,2,3. The other 340 predictors are i.i.d. N(0,1).
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(3) Example 2 in Zou and Zhang (2009), with n = 100, p = �4n2/3� − 5 = 81,
σ = 6, and

β0 = (3, . . . ,3︸ ︷︷ ︸
27

,0, . . . ,0︸ ︷︷ ︸
54

)ᵀ.

The predictors are generated from a multivariate Normal distribution x ∼
Np(0,�) with covariance structure

�jk = 0.75|j−k| j, k = 1, . . . ,81.

(4) In this scenario, p = 995 � n = 100, and σ = 1. Of the 995 predictors 15
are active, and their raw coefficients, γl , l = 1, . . . ,15, are sampled randomly
from a Uniform distribution on the 15-dimensional unit sphere. The indices of
the active coefficients are equally spaced at j = 1,72, . . . ,995:

β0 = √
4(γ1,0, . . . ,0︸ ︷︷ ︸

71

, γ2,0, . . . ,0, γ14,0, . . . ,0︸ ︷︷ ︸
71

, γ15)
ᵀ.

The predictors are generated from a multivariate Normal distribution x ∼
Np(0,�) with covariance structure

�jk = 0.5|j−k|, j, k = 1, . . . ,1000,

and the scaling of the coefficient vector gives a signal-to-noise ratio of 4.

Scenarios (1) and (2) are closely related to the biomarkers discovery study in
Section 6 since the sample size is comparable to the number of patients in the study
(37) and the strong grouping structure mirrors the correlation typically found in
proteomics studies. Furthermore, the number of available proteins (81) is between
the number of predictors considered in the first two scenarios. The performance of
the estimators in scenarios (1) and (2) is thus indicative of their performance in our
biomarkers discover study.

We study the robustness of the estimators by contaminating the first m = �εn�
observations (xi , yi) as in Maronna (2011). Leverage points are introduced by re-
placing the predictors xi with

x̃i = ηi + klev√
aᵀ�−1a

a, i = 1, . . . ,m,

where ηi ∼ Np(0,0.12Ip) and a = ã − 1
p

ãᵀ1p with the entries ãj of ã following
a U(−1,1) distribution, j = 1, . . . , p. The parameter klev controls the distance in
the direction most influential for the estimator.

We also contaminate the observations in the response by altering the regression
coefficient

yi = x̃i β̃ with β̃j =
{
βj (1 + kslo) if βj �= 0,

kslo‖β‖∞ otherwise,
i = 1, . . . ,m.
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The parameters klev and kslo control the position of the contaminated obser-
vations. Preliminary analysis showed that the effect on all considered estimators
was almost the same for any klev > 1, hence we fixed klev = 2. The position of
the vertical outliers affects more of the estimators, and we consider a grid of 15
logarithmically spaced values for kslo between 1 and 500.

To measure prediction performance of the estimators, we generated a clean val-
idation set for each scenario, (x∗

i , y
∗
i ), i = 1, . . . , n∗, n∗ = 1000, and computed the

root mean squared prediction error (RMSPE) of (μ̂, β̂) as

RMSPE =
√√√√ 1

n∗
n∗∑
i=1

(
y∗
i − x∗

i
ᵀβ̂ − μ̂

)2
.

Model selection performance was assessed with the sensitivity (SENS) and
specificity (SPEC) of β̂:

SENS = TP

TP + FN
= #{j : β0j �= 0 ∧ β̂j �= 0}

#{j : β0j �= 0} ,

SPEC = TN

TN + FP
= #{j : β0j = 0 ∧ β̂j = 0}

#{j : β0j = 0} ,

where TP and FP stand for true and false positive and TN and FN stand for true
and false negative, respectively.

Sensitivity measures the proportion of active predictors detected by the estima-
tor, while specificity is the proportion of noise predictors correctly omitted from
the final model. Ideally, both measures should be close to 1, but since none of
the estimators in our study is variable selection consistent in these scenarios, the
exact true model is rarely chosen by any of them. In the context of the biomark-
ers discovery study, it is important to achieve a high sensitivity to ensure none of
the important proteins are missed and to simultaneously keep a reasonably high
specificity to control the cost of future validation experiments.

For the uncontaminated cases these measures provide a good picture of the
overall performance of the estimators. When contamination is introduced in the
training set, we summarize the performance over the entire grid of vertical out-
lier positions, k

(l)
slo, l = 1, . . . ,15, by the area under the curve of RMSPE values,

RMSPEcont. Let’s denote the estimate at k
(l)
slo by (μ̂(l), β̂(l)), then the overall RM-

SPE under contamination is

RMSPEcont = 1

k
(15)
slo − k

(1)
slo

∑
l=2,...,15

k
(l)
slo − k

(l−1)
slo

2

(
RMSPE

(
μ̂(l−1), β̂(l−1))

+ RMSPE
(
μ̂(l), β̂(l))).

As an example, Figure 1 shows the curve of RMSPE over kslo from one replication
of scenario (1) and 10% contamination. It can be seen that the worst case perfor-
mance might be at a different kslo value for each estimator, and the area under the
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FIG. 1. Root mean squared prediction error of different estimators over a grid of kslo values rang-
ing from 1 to 500 with 10% contamination under scenario (1).

curve reflects the overall performance of the estimator under the different contam-
ination settings examined. We use the same method to summarize the sensitivity
and specificity under contamination, denoted by SENScont and SPECcont, respec-
tively. Each contamination setting is replicated 200 times, creating 200 of these
curves and corresponding areas for each scenario.

For each scenario we compute PENSE(M) and the classical EN for several val-
ues of α. To save space, we present results only for the PENSE(M) estimators
corresponding to the α∗ with the smallest average cross-validated RMSPEcont and
the classical EN with smallest average cross-validated RMSPE on the uncontami-
nated training data.

5.3. Simulation results. Scenario (1): The prediction performance measures
of PENSE(M) and those of the competing estimators over 200 replications for
Scenario (1) are shown in Figure 2. The solid dots in the plot represent the av-
erage values, and the error bars mark the 5% and 95% quantiles of the RMSPE
(no contamination, left plot) and the RMSPEcont (10% contamination in the train-
ing set, right plot). In this scenario, we show the classical EN for α∗ = 0.7 and
PENSE(M) for α∗ = 0.9, which were both chosen based on the CV performance
of each estimator.

Scenario (1) is tailored to favor the elastic net penalty over the L1-penalty due
to the extreme grouping of the predictors. Without contamination the classical EN
estimator yields, on average, better prediction performance than LASSO and the
oracle OLS estimator. The problem with the L1-penalty of LASSO is that only a
single predictor is selected within each group. However, if the penalty parameter
λ is small enough, this single predictor can almost fully capture the effect of the
entire group. Thus, the benefit of the elastic net penalty is only marginally visible
in the prediction performance.

Among the robust estimators PENSEM achieves the smallest RMSPE under
no contamination as well as overall under contamination, even outperforming the
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FIG. 2. Average prediction performance of different estimators in scenario (1). The error bars
extend from the 5% to the 95% quantile. For the uncontaminated case we report the RMSPE. For
training data with 10% contamination, we show the overall measure RMSPEcont over a grid of kslo
from 1 to 500. Classical EN uses α∗ = 0.7, while PENSE(M) is using α∗ = 0.9.

robust oracle estimators. However, as observed for the classical estimators, the
difference between the robust regularized EN estimators (PENSE and PENSEM)
and the MMLASSO is small.

The strength of the elastic net penalty in this scenario becomes more noticeable
in the model selection performance in Figure 3. Regardless, if the data is contami-
nated, all of the LASSO-based estimators only pick a single coefficient per group
while the EN estimators consistently select whole groups. Thus, the sensitivity of
the LASSO methods is weak compared to that of elastic net methods. For the clas-
sical EN and PENSE(M) estimators, the selection of relevant variables brings also
some of the irrelevant ones shown by a slight drop in specificity. Although this

FIG. 3. Average specificity and sensitivity of different estimators in scenario (1). The error bars
extend from the 5% to the 95% quantile. For training data with 10% contamination, we show the
area under the curve (SENScont and SPECcont) over a grid of kslo from 1 to 500. Classical EN uses
α∗ = 0.7, while PENSE(M) is using α∗ = 0.9. Classical LASSO and EN are omitted from the panels
with contamination to avoid distortion of the plotting scale and hamper comparisons.
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FIG. 4. Average prediction performance of different estimators in scenario (2). The error bars
extend from the 5% to the 95% quantile. For the uncontaminated case we report the RMSPE. For
training data with 10% contamination, we show the overall measure RMSPEcont over a grid of kslo
from 1 to 500. Classical EN and PENSE(M) are both using α∗ = 0.9. The oracle estimates cannot
be computed in this scenario because there are more active predictors than observations. Classical
LASSO and EN are omitted from the right panel to avoid distortion of the plotting scale and hamper
comparisons.

may result in an incremented cost of the validation phase for a protoemics study,
in practice not all proteins can be successfully migrated due to their chemical prop-
erties. Thus, identifying a group of correlated proteins also increases the options
to build a strong validation assay.

Scenario (2): In this scenario, the difference between LASSO and EN estimators
is even more pronounced as shown in Figure 4.

Additionally, this scenario is similar to the biomarker study in terms of sam-
ple size, n < p, the grouped correlation structure and potential contamination. We
expect the performance of PENSE and PENSEM to be indicative of their perfor-
mance in the next section.

In addition, the oracle estimates cannot be computed since the number of active
predictors is larger than the sample size. The classical EN as well as PENSE both
achieve the best cross-validated prediction performance for α∗ = 0.9, reflecting the
sparsity of this scenario. PENSEM shows again the best prediction performance
of the robust estimators. The M-step reduces variability in the prediction perfor-
mance. As for model selection (Figure 5), we observe again large differences be-
tween the sensitivities of LASSO-type and EN-type estimators. The former select
only a single predictor from each group. In contrast to the previous scenario, how-
ever, PENSE(M) and classical EN have a higher specificity in this scenario than
in scenario (1) due to the large number of irrelevant predictors. Under contami-
nation PENSE selects all 60 active predictors 88% of the time and, on average,
selects only 23 of the 340 irrelevant predictors. Without contamination the model
selection of PENSE is on average even outperforming the classical EN.

From these results we are confident that PENSE and PENSEM are very well
suited to unmask potential biomarkers for cardiac allograft vasculopathy in our
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FIG. 5. Average specificity and sensitivity of different estimators in scenario (2). The error bars
extend from the 5% to the 95% quantile. For training data with 10% contamination, we show the
area under the curve (SENScont and SPECcont) over a grid of kslo from 1 to 500. Classical EN
and PENSE(M) are both using α∗ = 0.9. Classical LASSO and EN are omitted from the panels with
contamination to avoid distortion of the plotting scale and hamper comparisons.

application. Especially, the variable selection performance shows that our method-
ology keeps the risk of missing important proteins very low while simultaneously
maintaining the cost of migrating unnecessary proteins low.

Scenario (3): This is the last scenario where the elastic net penalty should have
an advantage over the L1 penalty. In terms of prediction performance (Figure 6),
PENSE and PENSEM (with α∗ = 0.7) perform, on average, almost as well as the
robust oracle estimate and notably better than the other robust estimators based
on an L1 penalty. It is clearly visible that the L1-based estimators have difficulty
addressing the moderate to high correlation among active predictors in this sce-

FIG. 6. Average prediction performance of different estimators in scenario (3). The error bars
extend from the 5% to the 95% quantile. For the uncontaminated case we report the RMSPE. For
training data with 10% contamination, we show the overall measure RMSPEcont over a grid of kslo
from 1 to 500. Classical EN and PENSE(M) are both using α∗ = 0.7. Classical LASSO and EN are
omitted from the right panel to avoid distortion of the plotting scale and hamper comparisons.
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FIG. 7. Average specificity and sensitivity of different estimators in scenario (3). The error bars
extend from the 5% to the 95% quantile. For training data with 10% contamination, we show the
area under the curve (SENScont and SPECcont) over a grid of kslo from 1 to 500. Classical EN
and PENSE(M) are both using α∗ = 0.7. Classical LASSO and EN are omitted from the panels with
contamination to avoid distortion of the plotting scale and hamper comparisons.

nario. For model selection, as shown in Figure 7, the classic EN and PENSE(M)
again outperform L1-based methods which, not surprisingly, comes at the cost of
a drop in their specificity. PENSE selects around 17 of the 54 irrelevant predictors
on average under contamination, while PENSEM selects roughly 21. SparseLTS
seems to generally select smaller models with decent accuracy, while MMLASSO
chooses as many noise predictors as PENSE but is less sensitive.

Scenario (4): The results of this very sparse scenario are shown in Figure 8.
Not surprisingly, the best CV performance for PENSE(M) is achieved with an L1-

FIG. 8. Average prediction performance of different estimators in scenario (4). The error bars
extend from the 5% to the 95% quantile. For the uncontaminated case we report the RMSPE. For
training data with 10% contamination, we show the overall measure RMSPEcont over a grid of
kslo from 1 to 500. Classical EN uses α∗ = 0.9 while PENSE(M) is fitted with α∗ = 1. Classical
LASSO and EN are omitted from the right panel to avoid distortion of the plotting scale and hamper
comparisons.
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FIG. 9. Average specificity and sensitivity of different estimators in scenario (4). The error bars
extend from the 5% to the 95% quantile. For training data with 10% contamination, we show the
area under the curve (SENScont and SPECcont) over a grid of kslo from 1 to 500. Classical EN
uses α∗ = 0.9 while PENSE(M) is fitted with α∗ = 1. Classical LASSO and EN are omitted from the
panels with contamination to avoid distortion of the plotting scale and hamper comparisons.

penalty (α∗ = 1). This example illustrates the flexibility of the EN penalty, which
ranges from the L1 to the L2 penalties, thus being adjustable to different degrees
of sparsity. As expected, PENSEM results are very similar to MMLASSO with
observed differences coming from the initial estimators used to initialize the M-
steps and the algorithms used to optimize the associated objective functions. MM-
LASSO has a slightly smaller average RMSPE than PENSEM in the uncontami-
nated case. However, under contamination, PENSEM shows a little better average
performance and less variation. When examining model selection as presented in
Figure 9, we can observe that all methods struggle to identify all 15 active covari-
ates. This can be mainly attributed to the fact that coefficients are sampled on the
unit sphere, which results in some coefficients being very small compared to oth-
ers. PENSEM generally exhibits less variation in sensitivity and has a very similar
average as MMLASSO in both measures under contamination.

In summary, these simulation results show that PENSE and PENSEM are per-
forming competitively compared to other robust regularized estimators of regres-
sion. The flexible elastic net penalty makes PENSE(M) applicable to a broad range
of scenarios and clearly outperforms L1-based estimates if important predictors
are correlated. Especially in scenarios with large number of relevant correlated co-
variates, the elastic net penalty is beneficial for both prediction performance and
identification of important predictors.

6. Biomarkers of cardiac allograft vasculopathy. In this Section, we use
PENSEM to select potential plasma biomarkers of cardiac allograft vasculopathy
(CAV), a major complication suffered by 50% of cardiac transplant recipients be-
yond the first year after transplantation. The most typical screening and diagnosis
of CAV requires the examination of the coronary arteries that supply oxygenated
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blood to the heart. Despite its invasiveness, cost and associated risks of complica-
tions, to date coronary angiography remains the most widely used tool to assess
the narrowing and stenosis of the coronary arteries (Schmauss and Weis (2008)).
The identification of plasma biomarkers of CAV can result in the development of a
simple blood test to diagnose and monitor this condition, significantly improving
current patient care options.

The Biomarkers in Transplantation (BiT) initiative has collected plasma sam-
ples from a cohort of patients who received a heart transplant at St. Paul’s Hospital,
Vancouver, British Columbia, and consented to be enrolled in the study. Around
one year after transplantation, some of these patients presented signs of coronary
artery narrowing, measured by the stenosis of the left anterior descending (LAD)
artery, as an indicator of CAV development. To identify potential biomarkers of
this condition, protein levels from 37 plasma samples, collected at one year af-
ter transplantation, were measured using isobaric tags for relative and absolute
quantitation (iTRAQ) technology. This mass spectrometry technique enabled the
simultaneous identification and quantification of multiple proteins present in the
samples. A full description of this proteomics study is given by Lin et al. (2013),
which developed a classifier of CAV using a preliminary univariate robust screen-
ing of proteins and a classical EN classification method. PENSE and PENSEM
combine robustness, variable selection and modeling in a single step, taking full
advantage of the multivariate nature of the data that can result in the identification
of new potential markers of CAV and a better prediction.

We validate our results on an independent set of 52 patients collected by BiT in
the second phase of their study. For the validation phase the plasma samples col-
lected around one year after transplantation were analyzed with a much more sen-
sitive proteomics technology, called Multiple Reaction Monitoring (MRM), which
allows the quantification of targeted proteins (Cohen Freue and Borchers (2012),
Domanski et al. (2012)). Since the use of MRM requires the development of stable
isotope-labeled standard peptides to measure the targeted proteins, only a subset
of candidate proteins is usually available in this validation phase. The stenosis of
the LAD artery was measured equally in all patients from the discovery and test
cohorts, using cardiac angiography.

Although hundreds of proteins were detected and measured by iTRAQ in most
patient samples, only a few proteins are expected to be associated with the ob-
served artery obstruction, resulting in a sparse regression model (i.e., most re-
gression coefficients equal to zero). Thus, we use PENSE to select a candidate
set of relevant proteins among the 81 proteins that were detected in all samples
and PENSEM to refine this set, both tuned to achieve a 25% breakdown point. In
this application, we induce a moderate level of sparsity using α∗ = 0.6, aiming
to control the number of potential false biomarkers identified and potential good
biomarkers missed in this study. As explained in Section 5.1, the selection of the
level of penalization is based on a robust measure of the size of the prediction er-
rors estimated by 10-fold CV. To make this selection more stable, we repeat this
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estimation 200 times over the full grid of penalty values and select λ∗
S as the max-

imum λ such that the median estimated prediction error at this value is within 1.5
MAD of the minimum median error across the grid. At this selected level of penal-
ization, PENSE identifies 35 potential markers to predict the diameter of the LAD
artery and thus assess the level of obstruction in that artery.

To refine the selection given by PENSE, PENSEM is computed over a grid of
λM values, using the selected PENSE as an initial estimator and selecting the opti-
mal level of penalization (λ∗

M ) with the same criteria used to select λ∗
S . PENSEM

selects 15 out of the 35 potential markers selected by PENSE to predict the diame-
ter of the LAD artery. Analogously, using the “one standard error” (1SE) rule such
that the CV error is within one standard error of that of the minimum, the classi-
cal EN estimator (using the same α parameter) does not select any variable (i.e.,
the intercept-only model is selected). Figure 10 illustrates PENSEM’s estimates
of the regression coefficients for different values of λM (i.e., PENSEM’s regular-
ization path), highlighting in blue the coefficients selected at the optimal level of
penalization chosen (i.e., λ∗

M represented by the vertical dashed line). The names
of the selected markers are given in Table 1. Interestingly, many of these markers
were previously related to CAV, including C4B/C4A, APOE, AMBP and SHBG
(Lin et al. (2013)). However, further analysis of this dataset using our estimators
allows the identification of new potential markers, including some additional pro-
teins of the coagulation and complement cascades (F10 and CFB, respectively), an-
other apolipoprotein (APOC2) and new homoglobin subunits (HBD, HBA, HBZ),

FIG. 10. PENSEM’s regularization path. The regularization path illustrates how the estimated
coefficients shrink at different levels of penalization. The optimal level of penalization λ∗

M is repre-
sented by the vertical dashed line. The path of the variables selected at this level of penalization are
highlighted in blue. Solid lines are used for the coefficients of the proteins available in the MRM test
set. The numbers in the labels correspond to in-house protein IDs.
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TABLE 1
Potential biomarkers of CAV identified by PENSEM. A validation Multiple Reaction Monitoring

(MRM) assay was developed for the proteins identified with an asterisk. The first column shows an
in-house protein ID used to match proteins from different datasets

Protein ID Gene Symbol Protein Name

3 C4B/C4A* Complement C4-B/C4-A
13 CFB Complement factor B
30 F2 Prothrombin (Fragment)
42 APOE* Apolipoprotein E
45 AMBP* Protein AMBP
46 ECM1 Extracellular matrix protein 1
59 ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3
68 SHBG* Sex hormone-binding globulin
69 SERPINF1 Pigment epithelium-derived factor
98 PROS1* Vitamin K-dependent protein S

101 F10 Coagulation factor X
116 APOC2* Apolipoprotein C-II
139 HBD Hemoglobin subunit delta
141 LCAT Phosphatidylcholine-sterol acyltransferase
298 HBA2; HBA1; HBZ Hemoglobin subunit alpha/zeta

among other biologically relevant proteins. Overall, results illustrate the involve-
ment of complex mechanisms of CAV, such as complement system activation and
regulation, immune recognition, inflammation and apoptosis related mechanisms
among others.

An additional advantage of using a robust estimator to estimate the regression
coefficients is that outlying observations can be flagged by looking at the residuals
of each point versus their fitted values (see Figure 11). Based on the results of the
angiography, no obstruction was detected in the LAD artery of the four patients in

FIG. 11. Patients flagged by PENSEM as outlying based on 15 proteins selected using iTRAQ data
in the discovery phase. The blue dashed lines represent ±2 times the robust τ -scale of the residuals.
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TABLE 2
Mean and standard deviation (SD) of the prediction τ -scales

Lasso EN PENSE PENSEM MMLasso SparseLTS

Mean 17.20 17.17 17.53 16.99 18.20 18.07
SD 1.58 1.47 1.53 1.30 1.74 1.45

the lower part of the figure (B-514, B-584, B-527 and B-561 measured in weeks
51 and 52 after transplant as indicated by the sample labels). However, a second
measurement of the LAD of the last three patients using a more accurate tech-
nique (IVUS) indicates that their arteries present a mild stenosis with about 16%
area reduction, as suggested by PENSEM’s predictions (negative residuals). Sim-
ilarly, the stenosis of B-381 might have been overestimated by the angiography
performed at week 51 (91% area reduction) compared to the results of the IVUS
test (79% area reduction). Other outlying measurements may be present in the
iTRAQ protein measurements of these patient samples highlighted by PENSEM.

The performance of the estimators is initially evaluated by 200 replications of
10-fold cross-validations and compared to that of the classical EN and some robust
estimators (see Table 2). An α value of 0.6 is used for all elastic net estimators. In
terms of prediction, all estimators perform similarly, with PENSEM showing, on
average, a slightly better performance.

A subset of six proteins (marked with asterisk in Table 1 and represented with
solid lines in Figure 10) out of the 15 selected proteins were successfully devel-
oped and measured with MRM on all 37 discovery samples, as well as 52 new test
samples. Thus, to validate the results of PENSEM’s protein selection, we train and
test a model based on these independent and more precise protein measurements.
We use an MM-estimator to train the model based on the six available proteins
since no additional selection is required at this stage. The MM-estimator is con-
ceptually equivalent to PENSEM when the penalty parameters λS and λM are set
to 0.

The model is trained on the same 37 training plasma samples, except that the
protein levels were now measured by MRM instead of iTRAQ. Interestingly, the
MM-estimator flags the samples B-381W51, B527W51 and B-561W52 as outly-
ing even when proteins are measured by MRM. Some of the other samples flagged
by PENSEM as outliers are diagnosed as borderline outliers by the MM-estimator.

The 52 test samples are from new patients, not involved in any phase of the dis-
covery, so they constitute an independent test set to validate our estimated model.
Among these test samples, 12 are flagged as outlying. Since robust estimators are
not trained to predict the response of outlying samples, we exclude these samples
to estimate the performance of our robust estimated model. The predicted response
of the remaining 40 test samples is used to classify the disease status of the test
patients.
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In clinical practice a percentage of diameter stenosis below 20 suggests that
the patient is not suffering from CAV, and a percentage above 40 is an indication
of CAV. To have enough samples in both groups, we use a middle cut-off of 30
to classify patients into CAV and nonCAV based on our predicted percentage of
diameter stenosis. Training a model based on six out of the 15 proteins selected by
PENSEM and using an MM-estimator, we can predict the percentage of diameter
stenosis with sufficient accuracy to distinguish CAV from nonCAV test patients
achieving an AUC of 0.85.

Overall, results demonstrate the ability of PENSEM to identify promising
biomarkers of CAV, some of which could be migrated to a more sensitive and cost-
effective platform (MRM) to validate the model in an external cohort of patients
without antibody dependencies. While the migration of proteins is a challenging
step in a biomarkers pipeline, our model preserves the accuracy in predicting the
percentage of diameter stenosis in new test samples. The plasma protein biomark-
ers of CAV selected by PENSEM may offer a relevant post-transplant monitoring
tool to effectively guide clinical care. Our robust PENSE and PENSEM estima-
tors provide a reference for a wide range of other biomarkers studies and complex
datasets.

7. Conclusions. In this paper, we propose regularized robust estimators with
an elastic net penalty, which we call PENSE and PENSEM. The former is a pe-
nalized S-estimator, while the latter corresponds to a penalized high-breakdown
M-estimator to increase the efficiency of the parameter estimates.

We show that these estimators retain the robustness properties of their unpenal-
ized counterparts (high breakdown point and consistency) which was essential in
our biomarkers study since the data contain some outlying data points. At the same
time our numerical experiments show that PENSE and PENSEM also inherit the
prediction and model selection properties of the elastic net penalty. In particular,
highly correlated explanatory variables enter or leave the model in groups, unlike
what is observed with the L1-penalty of LASSO. In practice, this property enables
the identification of potentially correlated, but equally relevant, biomarkers.

In addition, we propose an efficient algorithm to compute both PENSE and
PENSEM that works very well in practice. Computing regression estimators with
good robustness properties is computationally very costly because their loss func-
tions are necessarily nonconvex. Moreover, the presence of a nondifferentiable
penalty term for the penalized estimators increases their computational difficulty.
Our algorithm relies on an iterative procedure derived from the first-order condi-
tions of the optimization problem that defines the penalized estimators. These iter-
ations are initialized from a relatively small number of robust starting values that
are constructed following the ideas of Peña and Yohai (Peña and Yohai (1999)).
Our algorithm was designed to work effectively in a variety of datasets including
those with more variables than observations as that of our proteomics study.
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In practice, an important step of the computation of penalized estimators is
choosing an “optimal” penalty level. Although cross-validation is a very popu-
lar method to do this, in our case we need to be concerned with the possibility
of having outliers in our data, which may affect the estimated prediction error.
Following other proposals in the literature, we use a robust scale estimator of the
prediction errors obtained via cross-validation instead of the mean squared predic-
tion error. An implementation in R of our algorithm (including the robust cross-
validation step) is publicly available from CRAN in an R-package called “pense”
(https://cran.r-project.org/package=pense).

Finally, we use PENSE and PENSEM to study the association between hun-
dreds of plasma protein levels and a measure of artery obstruction on cardiac trans-
plant recipients. Our robust estimators identify new potentially relevant biomark-
ers that are not found with nonrobust alternatives. Moreover, our robust penalized
estimators flag eight patients with suspiciously atypical artery obstruction values.
Measurements with more accurate techniques for four of these patients confirm
that the original values of obstruction were inaccurate. Importantly, a model based
on most of the proteins selected by PENSEM is validated in a new set of 52 test
samples, achieving an AUC of 0.85 when classifying 40 nonoutlying samples.

Overall, our robust PENSE and PENSEM estimators and the algorithms to com-
pute them advance the current knowledge of robust regularized regression estima-
tors and provide flexible and computationally feasible robust estimation for com-
plex and large datasets.
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Supplementary material for “Robust elastic net estimators for variable
selection and identification of proteomic biomarkers”. (DOI: 10.1214/19-
AOAS1269SUPP; .pdf). We provide additional details on PENSE algorithm, prop-
erties and mathematical proofs.
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